Suppr超能文献

基于石墨烯场效应晶体管的等离子体波的高灵敏度和宽带可调太赫兹响应

Highly sensitive and wide-band tunable terahertz response of plasma waves based on graphene field effect transistors.

作者信息

Wang Lin, Chen Xiaoshuang, Yu Anqi, Zhang Yang, Ding Jiayi, Lu Wei

机构信息

National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, Shanghai 200083, China.

1] National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai, Shanghai 200083, China [2] Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

Sci Rep. 2014 Jun 27;4:5470. doi: 10.1038/srep05470.

Abstract

Terahertz (THz) technology is becoming a spotlight of scientific interest due to its promising myriad applications including imaging, spectroscopy, industry control and communication. However, one of the major bottlenecks for advancing this field is due to lack of well-developed solid-state sources and detectors operating at THz gap which serves to mark the boundary between electronics and photonics. Here, we demonstrate exceptionally wide tunable terahertz plasma-wave excitation can be realized in the channel of micrometer-level graphene field effect transistors (FET). Owing to the intrinsic high propagation velocity of plasma waves (>~10(8) cm/s) and Dirac band structure, the plasma-wave graphene-FETs yield promising prospects for fast sensing, THz detection, etc. The results indicate that the multiple guide-wave resonances in the graphene sheets can lead to the deep sub-wavelength confinement of terahertz wave and with Q-factor orders of magnitude higher than that of conventional 2DEG system at room temperature. Rooted in this understanding, the performance trade-off among signal attenuation, broadband operation, on-chip integrability can be avoided in future THz smart photonic network system by merging photonics and electronics. The unique properties presented can open up the exciting routes to compact solid state tunable THz detectors, filters, and wide band subwavelength imaging based on the graphene-FETs.

摘要

太赫兹(THz)技术因其在成像、光谱学、工业控制和通信等众多应用中展现出的潜力,正成为科学界关注的焦点。然而,推动该领域发展的主要瓶颈之一是缺乏在太赫兹频段运行的成熟固态源和探测器,该频段标志着电子学和光子学的界限。在此,我们证明了在微米级石墨烯场效应晶体管(FET)的沟道中可以实现异常宽的可调谐太赫兹等离子体波激发。由于等离子体波固有的高传播速度(>~10^8 cm/s)和狄拉克能带结构,等离子体波石墨烯场效应晶体管在快速传感、太赫兹探测等方面展现出了广阔前景。结果表明,石墨烯片中的多个导波共振可导致太赫兹波的深亚波长限制,并且在室温下品质因数比传统二维电子气系统高几个数量级。基于这一认识,通过将光子学和电子学相结合,在未来的太赫兹智能光子网络系统中可以避免信号衰减、宽带操作和片上集成度之间的性能权衡。所呈现的独特特性可为基于石墨烯场效应晶体管的紧凑型固态可调谐太赫兹探测器、滤波器和宽带亚波长成像开辟令人兴奋的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad28/5381543/306d8b939297/srep05470-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验