Suppr超能文献

预测性统计模型将城市水道中的先行气象条件与水道细菌污染联系起来。

Predictive statistical models linking antecedent meteorological conditions and waterway bacterial contamination in urban waterways.

机构信息

Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA.

Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA.

出版信息

Water Res. 2015 Jun 1;76:143-59. doi: 10.1016/j.watres.2015.02.040. Epub 2015 Mar 4.

Abstract

Although the relationships between meteorological conditions and waterway bacterial contamination are being better understood, statistical models capable of fully leveraging these links have not been developed for highly urbanized settings. We present a hierarchical Bayesian regression model for predicting transient fecal indicator bacteria contamination episodes in urban waterways. Canals, creeks, and rivers of the New York City harbor system are used to examine the model. The model configuration facilitates the hierarchical structure of the underlying system with weekly observations nested within sampling sites, which in turn were nested inside of the harbor network. Models are compared using cross-validation and a variety of Bayesian and classical model fit statistics. The uncertainty of predicted enterococci concentration values is reflected by sampling from the posterior predictive distribution. Issuing predictions with the uncertainty reasonably reflected allows a water manager or a monitoring agency to issue warnings that better reflect the underlying risk of exposure. A model using only antecedent meteorological conditions is shown to correctly classify safe and unsafe levels of enterococci with good accuracy. The hierarchical Bayesian regression approach is most valuable where transient fecal indicator bacteria contamination is problematic and drainage network data are scarce.

摘要

尽管气象条件与航道细菌污染之间的关系正在得到更好的理解,但对于高度城市化的环境,还没有开发出能够充分利用这些关联的统计模型。我们提出了一种用于预测城市航道中瞬时粪大肠菌群污染事件的分层贝叶斯回归模型。我们使用纽约市港口系统的运河、小溪和河流来检验该模型。该模型的配置有利于基础系统的分层结构,每周的观测值嵌套在采样点内,而采样点又嵌套在港口网络内。通过交叉验证和各种贝叶斯和经典模型拟合统计量来比较模型。通过从后验预测分布中抽样来反映预测的肠球菌浓度值的不确定性。合理反映不确定性的预测允许水管理者或监测机构发出更好地反映潜在暴露风险的警告。仅使用先行气象条件的模型被证明可以很好地正确分类肠球菌的安全和不安全水平。分层贝叶斯回归方法在瞬时粪大肠菌群污染是一个问题且排水管网数据稀缺的情况下最有价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验