Yan Yongke, Geng Liwei D, Zhu Li-Feng, Leng Haoyang, Li Xiaotian, Liu Hairui, Lin Dabin, Wang Ke, Wang Yu U, Priya Shashank
Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, 49931, USA.
Adv Sci (Weinh). 2022 May;9(14):e2105715. doi: 10.1002/advs.202105715. Epub 2022 Mar 16.
Piezoelectric materials enable the conversion of mechanical energy into electrical energy and vice-versa. Ultrahigh piezoelectricity has been only observed in single crystals. Realization of piezoelectric ceramics with longitudinal piezoelectric constant (d ) close to 2000 pC N , which combines single crystal-like high properties and ceramic-like cost effectiveness, large-scale manufacturing, and machinability will be a milestone in advancement of piezoelectric ceramic materials. Here, guided by phenomenological models and phase-field simulations that provide conditions for flattening the energy landscape of polarization, a synergistic design strategy is demonstrated that exploits compositionally driven local structural heterogeneity and microstructural grain orientation/texturing to provide record piezoelectricity in ceramics. This strategy is demonstrated on [001] -textured and Eu -doped Pb(Mg Nb )O -PbTiO (PMN-PT) ceramics that exhibit the highest piezoelectric coefficient (small-signal d of up to 1950 pC N and large-signal d * of ≈2100 pm V ) among all the reported piezoelectric ceramics. Extensive characterization conducted using high-resolution microscopy and diffraction techniques in conjunction with the computational models reveals the underlying mechanisms governing the piezoelectric performance. Further, the impact of losses on the electromechanical coupling is identified, which plays major role in suppressing the percentage of piezoelectricity enhancement, and the fundamental understanding of loss in this study sheds light on further enhancement of piezoelectricity. These results on cost-effective and record performance piezoelectric ceramics will launch a new generation of piezoelectric applications.
压电材料能够实现机械能与电能之间的相互转换。超高压电性仅在单晶中被观察到。实现纵向压电常数(d)接近2000 pC/N的压电陶瓷,兼具类似单晶的高性能以及类似陶瓷的成本效益、大规模制造能力和可加工性,将是压电陶瓷材料发展历程中的一个里程碑。在此,在唯象模型和相场模拟的指导下,这些模型为极化能量景观的平坦化提供了条件,展示了一种协同设计策略,该策略利用成分驱动的局部结构不均匀性以及微观结构晶粒取向/织构,从而在陶瓷中实现创纪录的压电性。这种策略在具有[001]织构且掺铕的Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)陶瓷上得到了验证,在所有已报道的压电陶瓷中,该陶瓷展现出最高的压电系数(小信号d高达1950 pC/N,大信号d*约为2100 pm/V)。使用高分辨率显微镜和衍射技术结合计算模型进行的广泛表征揭示了支配压电性能的潜在机制。此外,确定了损耗对机电耦合的影响,这在抑制压电性增强百分比方面起着主要作用,并且本研究对损耗的基本理解为进一步提高压电性提供了思路。这些关于具有成本效益且性能创纪录的压电陶瓷的结果将开启新一代压电应用。