Unit of Neurology, Department of Biomedical and NeuroMotor Sciences, University of Bologna Bologna, Italy.
Front Genet. 2015 Mar 12;6:90. doi: 10.3389/fgene.2015.00090. eCollection 2015.
Autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN) and Hereditary sensory neuropathy with dementia and hearing loss (HSN1E) are two rare, overlapping neurodegenerative syndromes that have been recently linked to allelic dominant pathogenic mutations in the DNMT1 gene, coding for DNA (cytosine-5)-methyltransferase 1 (DNMT1). DNMT1 is the enzyme responsible for maintaining the nuclear genome methylation patterns during the DNA replication and repair, thus regulating gene expression. The mutations responsible for ADCA-DN and HSN1E affect the replication foci targeting sequence domain, which regulates DNMT1 binding to chromatin. DNMT1 dysfunction is anticipated to lead to a global alteration of the DNA methylation pattern with predictable downstream consequences on gene expression. Interestingly, ADCA-DN and HSN1E phenotypes share some clinical features typical of mitochondrial diseases, such as optic atrophy, peripheral neuropathy, and deafness, and some biochemical evidence of mitochondrial dysfunction. The recent discovery of a mitochondrial isoform of DNMT1 and its proposed role in methylating mitochondrial DNA (mtDNA) suggests that DNMT1 mutations may directly affect mtDNA and mitochondrial physiology. On the basis of this latter finding the link between DNMT1 abnormal activity and mitochondrial dysfunction in ADCA-DN and HSN1E appears intuitive, however, mtDNA methylation remains highly debated. In the last years several groups demonstrated the presence of 5-methylcytosine in mtDNA by different approaches, but, on the other end, the opposite evidence that mtDNA is not methylated has also been published. Since over 1500 mitochondrial proteins are encoded by the nuclear genome, the altered methylation of these genes may well have a critical role in leading to the mitochondrial impairment observed in ADCA-DN and HSN1E. Thus, many open questions still remain unanswered, such as why mtDNA should be methylated, and how this process is regulated and executed?
常染色体显性小脑共济失调-耳聋和发作性睡病(ADCA-DN)和遗传性感觉神经病伴痴呆和听力损失(HSN1E)是两种罕见的、重叠的神经退行性综合征,最近与 DNMT1 基因的等位显性致病性突变相关联,该基因编码 DNA(胞嘧啶-5)-甲基转移酶 1(DNMT1)。DNMT1 是负责在 DNA 复制和修复过程中维持核基因组甲基化模式的酶,从而调节基因表达。导致 ADCA-DN 和 HSN1E 的突变影响复制焦点靶向序列结构域,该结构域调节 DNMT1 与染色质的结合。预计 DNMT1 功能障碍会导致 DNA 甲基化模式的全局改变,从而对基因表达产生可预测的下游影响。有趣的是,ADCA-DN 和 HSN1E 表型具有一些典型的线粒体疾病的临床特征,如视神经萎缩、周围神经病和耳聋,以及一些线粒体功能障碍的生化证据。最近发现了一种线粒体同工型的 DNMT1 及其在甲基化线粒体 DNA(mtDNA)中的拟议作用表明,DNMT1 突变可能直接影响 mtDNA 和线粒体生理学。基于这一发现,DNMT1 异常活性与 ADCA-DN 和 HSN1E 中的线粒体功能障碍之间的联系似乎是直观的,然而,mtDNA 甲基化仍然存在很大争议。在过去的几年中,几个研究小组通过不同的方法证明了 mtDNA 中 5-甲基胞嘧啶的存在,但另一方面,也有相反的证据表明 mtDNA 没有甲基化。由于超过 1500 种线粒体蛋白由核基因组编码,这些基因的改变甲基化很可能在导致 ADCA-DN 和 HSN1E 中观察到的线粒体损伤中起关键作用。因此,仍然有许多悬而未决的问题,例如为什么 mtDNA 应该被甲基化,以及这个过程是如何被调控和执行的?