IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna 40139, Italy.
Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40139, Italy.
Hum Mol Genet. 2020 Jul 21;29(11):1864-1881. doi: 10.1093/hmg/ddaa014.
ADCA-DN and HSN-IE are rare neurodegenerative syndromes caused by dominant mutations in the replication foci targeting sequence (RFTS) of the DNA methyltransferase 1 (DNMT1) gene. Both phenotypes resemble mitochondrial disorders, and mitochondrial dysfunction was first observed in ADCA-DN. To explore mitochondrial involvement, we studied the effects of DNMT1 mutations in fibroblasts from four ADCA-DN and two HSN-IE patients. We documented impaired activity of purified DNMT1 mutant proteins, which in fibroblasts results in increased DNMT1 amount. We demonstrated that DNMT1 is not localized within mitochondria, but it is associated with the mitochondrial outer membrane. Concordantly, mitochondrial DNA failed to show meaningful CpG methylation. Strikingly, we found activated mitobiogenesis and OXPHOS with significant increase of H2O2, sharply contrasting with a reduced ATP content. Metabolomics profiling of mutant cells highlighted purine, arginine/urea cycle and glutamate metabolisms as the most consistently altered pathways, similar to primary mitochondrial diseases. The most severe mutations showed activation of energy shortage AMPK-dependent sensing, leading to mTORC1 inhibition. We propose that DNMT1 RFTS mutations deregulate metabolism lowering ATP levels, as a result of increased purine catabolism and urea cycle pathways. This is associated with a paradoxical mitochondrial hyper-function and increased oxidative stress, possibly resulting in neurodegeneration in non-dividing cells.
ADCA-DN 和 HSN-IE 是由 DNA 甲基转移酶 1(DNMT1)基因复制焦点靶向序列(RFTS)中的显性突变引起的罕见神经退行性综合征。这两种表型都类似于线粒体疾病,并且首先在 ADCA-DN 中观察到线粒体功能障碍。为了探讨线粒体的参与,我们研究了来自 4 名 ADCA-DN 和 2 名 HSN-IE 患者的成纤维细胞中 DNMT1 突变的影响。我们记录了纯化的 DNMT1 突变蛋白活性受损,这导致成纤维细胞中 DNMT1 数量增加。我们证明 DNMT1 不在线粒体内部定位,而是与线粒体外膜相关。一致地,线粒体 DNA 未能显示有意义的 CpG 甲基化。引人注目的是,我们发现激活的线粒体生物发生和 OXPHOS 伴随着 H2O2 的显著增加,与减少的 ATP 含量形成鲜明对比。突变细胞的代谢组学分析突出了嘌呤、精氨酸/尿素循环和谷氨酸代谢作为最一致改变的途径,类似于原发性线粒体疾病。最严重的突变激活了能量短缺 AMPK 依赖性传感,导致 mTORC1 抑制。我们提出,DNMT1 RFTS 突变通过增加嘌呤分解代谢和尿素循环途径来调节代谢,从而降低 ATP 水平。这与矛盾的线粒体超功能和增加的氧化应激相关联,可能导致非分裂细胞的神经退行性变。