Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin-Dahlem, Germany.
Department of Mathematical Analysis, Charles University, 18675 Prague, Czech Republic.
Phys Rev Lett. 2015 Mar 13;114(10):105503. doi: 10.1103/PhysRevLett.114.105503. Epub 2015 Mar 10.
Statistical learning of materials properties or functions so far starts with a largely silent, nonchallenged step: the choice of the set of descriptive parameters (termed descriptor). However, when the scientific connection between the descriptor and the actuating mechanisms is unclear, the causality of the learned descriptor-property relation is uncertain. Thus, a trustful prediction of new promising materials, identification of anomalies, and scientific advancement are doubtful. We analyze this issue and define requirements for a suitable descriptor. For a classic example, the energy difference of zinc blende or wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor can be found systematically.
到目前为止,材料性质或功能的统计学习主要从一个基本无声、无人质疑的步骤开始:选择描述性参数集(称为描述符)。然而,当描述符与作用机制之间的科学联系不清楚时,所学习的描述符-性质关系的因果关系就不确定。因此,对新的有前途的材料进行可靠的预测、异常的识别和科学的进步都是值得怀疑的。我们分析了这个问题,并为合适的描述符定义了要求。以锌矿或纤锌矿和岩盐半导体的能隙差为例,我们展示了如何系统地找到有意义的描述符。