Suppr超能文献

基于本体推理和网络分析的结直肠癌药物靶点预测

Colorectal cancer drug target prediction using ontology-based inference and network analysis.

作者信息

Tao Cui, Sun Jingchun, Zheng W Jim, Chen Junjie, Xu Hua

机构信息

Center for Computational Biomedicine, School of Biomedical informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA and Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Center for Computational Biomedicine, School of Biomedical informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA and Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

出版信息

Database (Oxford). 2015 Mar 27;2015. doi: 10.1093/database/bav015. Print 2015.

Abstract

Identification of novel drug targets is a critical step in drug development. Many recent studies have produced multiple types of data, which provides an opportunity to mine the relationships among them to predict drug targets. In this study, we present a novel integrative approach that combines ontology reasoning with network-assisted gene ranking to predict new drug targets. We utilized colorectal cancer (CRC) as a proof-of-concept use case to illustrate the approach. Starting from FDA-approved CRC drugs and the relationships among disease, drug, gene, pathway, and SNP in an ontology representing PharmGKB data, we inferred 113 potential CRC drug targets. We further prioritized these genes based on their relationships with CRC disease genes in the context of human protein-protein interaction networks. Thus, among the 113 potential drug targets, 15 were selected as the promising drug targets, including some genes that are supported by previous studies. Among them, EGFR, TOP1 and VEGFA are known targets of FDA-approved drugs. Additionally, CCND1 (cyclin D1), and PTGS2 (prostaglandin-endoperoxide synthase 2) have reported to be relevant to CRC or as potential drug targets based on the literature search. These results indicate that our approach is promising for drug target prediction for CRC treatment, which might be useful for other cancer therapeutics.

摘要

鉴定新的药物靶点是药物研发中的关键一步。最近的许多研究产生了多种类型的数据,这为挖掘它们之间的关系以预测药物靶点提供了机会。在本研究中,我们提出了一种新颖的综合方法,该方法将本体推理与网络辅助基因排序相结合来预测新的药物靶点。我们利用结直肠癌(CRC)作为概念验证用例来说明该方法。从FDA批准的CRC药物以及代表PharmGKB数据的本体中疾病、药物、基因、通路和单核苷酸多态性之间的关系出发,我们推断出113个潜在的CRC药物靶点。我们在人类蛋白质-蛋白质相互作用网络的背景下,根据这些基因与CRC疾病基因的关系进一步对它们进行了优先级排序。因此,在这113个潜在药物靶点中,有15个被选为有前景的药物靶点,其中包括一些先前研究支持的基因。其中,EGFR、TOP1和VEGFA是FDA批准药物的已知靶点。此外,根据文献检索,CCND1(细胞周期蛋白D1)和PTGS2(前列腺素内过氧化物合酶2)已被报道与CRC相关或作为潜在的药物靶点。这些结果表明,我们的方法在预测CRC治疗的药物靶点方面很有前景,这可能对其他癌症治疗也有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/793b/4375358/cb8398b600c2/bav015f1p.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验