Suppr超能文献

介孔二氧化硅纳米颗粒的气溶胶微滴递送:一种基于呼吸道的治疗策略。

Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics.

作者信息

Li Xueting, Xue Min, Raabe Otto G, Aaron Holly L, Eisen Ellen A, Evans James E, Hayes Fred A, Inaga Sumire, Tagmount Abderrahmane, Takeuchi Minoru, Vulpe Chris, Zink Jeffrey I, Risbud Subhash H, Pinkerton Kent E

机构信息

Center for Health and the Environment, University of California, Davis, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, USA; Department of Chemical Engineering and Materials Science, University of California, Davis, USA.

Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.

出版信息

Nanomedicine. 2015 Aug;11(6):1377-85. doi: 10.1016/j.nano.2015.03.007. Epub 2015 Mar 25.

Abstract

UNLABELLED

A highly versatile nanoplatform that couples mesoporous silica nanoparticles (MSNs) with an aerosol technology to achieve direct nanoscale delivery to the respiratory tract is described. This novel method can deposit MSN nanoparticles throughout the entire respiratory tract, including nasal, tracheobronchial and pulmonary regions using a water-based aerosol. This delivery method was successfully tested in mice by inhalation. The MSN nanoparticles used have the potential for carrying and delivering therapeutic agents to highly specific target sites of the respiratory tract. The approach provides a critical foundation for developing therapeutic treatment protocols for a wide range of diseases where aerosol delivery to the respiratory system would be desirable.

FROM THE CLINICAL EDITOR

Delivery of drugs via the respiratory tract is an attractive route of administration. In this article, the authors described the design of mesoporous silica nanoparticles which could act as carriers for drugs. The underlying efficacy was successfully tested in a mouse model. This drug-carrier inhalation nanotechnology should potentially be useful in human clinical setting in the future.

摘要

未标注

描述了一种高度通用的纳米平台,该平台将介孔二氧化硅纳米颗粒(MSN)与气溶胶技术相结合,以实现向呼吸道的直接纳米级递送。这种新方法可以使用水基气溶胶将MSN纳米颗粒沉积在整个呼吸道,包括鼻腔、气管支气管和肺部区域。这种递送方法已通过吸入在小鼠中成功测试。所使用的MSN纳米颗粒有潜力将治疗剂携带并递送至呼吸道的高度特异性靶位点。该方法为开发针对广泛疾病的治疗方案提供了关键基础,在这些疾病中,通过气溶胶递送至呼吸系统是可取的。

来自临床编辑

通过呼吸道给药是一种有吸引力的给药途径。在本文中,作者描述了可作为药物载体的介孔二氧化硅纳米颗粒的设计。其潜在疗效已在小鼠模型中成功测试。这种药物载体吸入纳米技术未来在人类临床环境中可能会有用。

相似文献

1
Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics.
Nanomedicine. 2015 Aug;11(6):1377-85. doi: 10.1016/j.nano.2015.03.007. Epub 2015 Mar 25.
2
Mesoporous silica nanoparticles for pulmonary drug delivery.
Adv Drug Deliv Rev. 2021 Oct;177:113953. doi: 10.1016/j.addr.2021.113953. Epub 2021 Aug 30.
4
Mesoporous silica nanoparticles in drug delivery and biomedical applications.
Nanomedicine. 2015 Feb;11(2):313-27. doi: 10.1016/j.nano.2014.09.014. Epub 2014 Nov 13.
7
A Review on Recent Technologies and Patents on Silica Nanoparticles for Cancer Treatment and Diagnosis.
Recent Pat Drug Deliv Formul. 2020;14(2):126-144. doi: 10.2174/1872211314666200914155051.
8
Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles.
Acta Biomater. 2017 Mar 15;51:471-478. doi: 10.1016/j.actbio.2017.01.062. Epub 2017 Jan 25.
9
Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer.
Acta Biomater. 2019 Apr 15;89:1-13. doi: 10.1016/j.actbio.2019.02.031. Epub 2019 Feb 20.
10
Tumor Targeting and Tumor Growth Inhibition Capability of Mesoporous Silica Nanoparticles in Mouse Models.
Enzymes. 2018;44:61-82. doi: 10.1016/bs.enz.2018.09.002. Epub 2018 Oct 12.

引用本文的文献

1
Pulmonary inhalation for disease treatment: Basic research and clinical translations.
Mater Today Bio. 2024 Jan 22;25:100966. doi: 10.1016/j.mtbio.2024.100966. eCollection 2024 Apr.
2
The emergence of nanoporous materials in lung cancer therapy.
Sci Technol Adv Mater. 2022 Jul 20;23(1):225-274. doi: 10.1080/14686996.2022.2052181. eCollection 2022.
5
Mesoporous Silica Nanoparticles as a Potential Platform for Vaccine Development against Tuberculosis.
Pharmaceutics. 2020 Dec 16;12(12):1218. doi: 10.3390/pharmaceutics12121218.
8
Long-term monitoring for nanomedicine implants and drugs.
Nat Nanotechnol. 2016 Mar;11(3):206-10. doi: 10.1038/nnano.2015.341.

本文引用的文献

1
The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair.
Biomaterials. 2013 Dec;34(37):9401-12. doi: 10.1016/j.biomaterials.2013.08.051. Epub 2013 Sep 7.
2
New perspectives in nanomedicine.
Pharmacol Ther. 2013 Nov;140(2):176-85. doi: 10.1016/j.pharmthera.2013.06.008. Epub 2013 Jun 25.
3
Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.
Acc Chem Res. 2013 Mar 19;46(3):792-801. doi: 10.1021/ar3000986. Epub 2013 Feb 6.
4
Mesoporous silica nanoparticles: A multifunctional nano therapeutic system.
Integr Biol (Camb). 2013 Jan;5(1):19-28. doi: 10.1039/c2ib20137b.
5
In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers.
Nat Med. 2012 Oct;18(10):1580-5. doi: 10.1038/nm.2933. Epub 2012 Sep 16.
6
Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic.
J Am Chem Soc. 2012 Sep 26;134(38):15790-804. doi: 10.1021/ja304907c. Epub 2012 Sep 17.
7
Mesoporous silica nanoparticles in medicine--recent advances.
Adv Drug Deliv Rev. 2013 May;65(5):689-702. doi: 10.1016/j.addr.2012.07.018. Epub 2012 Aug 18.
8
Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles.
J Biomed Nanotechnol. 2012 Aug;8(4):624-32. doi: 10.1166/jbn.2012.1416.
9
Mesoporous silica nanoparticles in nanotechnology.
Crit Rev Biotechnol. 2013 Sep;33(3):229-45. doi: 10.3109/07388551.2012.685860. Epub 2012 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验