文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

介孔硅纳米颗粒纳米载体:生物功能和生物相容性。

Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.

机构信息

Department of Chemical and Nuclear Engineering, the University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Acc Chem Res. 2013 Mar 19;46(3):792-801. doi: 10.1021/ar3000986. Epub 2013 Feb 6.


DOI:10.1021/ar3000986
PMID:23387478
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3686852/
Abstract

The study of ordered mesoporous silica materials has exploded since their discovery by Mobil researchers 20 years ago. The ability to make uniformly sized, porous, and dispersible nanoparticles using colloidal chemistry and evaporation-induced self-assembly has led to many applications of mesoporous silica nanoparticles (MSNPs) as "nanocarriers" for delivery of drugs and other cargos to cells. The exceptionally high surface area of MSNPs, often exceeding 1000 m²/g, and the ability to independently modify pore size and surface chemistry, enables the loading of diverse cargos and cargo combinations at levels exceeding those of other common drug delivery carriers such as liposomes or polymer conjugates. This is because noncovalent electrostatic, hydrogen-bonding, and van der Waals interactions of the cargo with the MSNP internal surface cause preferential adsorption of cargo to the MSNP, allowing loading capacities to surpass the solubility limit of a solution or that achievable by osmotic gradient loading. The ability to independently modify the MSNP surface and interior makes possible engineered biofunctionality and biocompatibility. In this Account, we detail our recent efforts to develop MSNPs as biocompatible nanocarriers (Figure 1 ) that simultaneously display multiple functions including (1) high visibility/contrast in multiple imaging modalities, (2) dispersibility, (3) binding specificity to a particular target tissue or cell type, (4) ability to load and deliver large concentrations of diverse cargos, and (5) triggered or controlled release of cargo. Toward function 1, we chemically conjugated fluorescent dyes or incorporated magnetic nanoparticles to enable in vivo optical or magnetic resonance imaging. For function 2, we have made MSNPs with polymer coatings, charged groups, or supported lipid bilayers, which decrease aggregation and improve stability in saline solutions. For functions 3 and 4, we have enhanced passive bioaccumulation via the enhanced permeability and retention effect by modifying the MSNP surfaces with positively charged polymers. We have also chemically attached ligands to MSNPs that selectively bind to receptors overexpressed in cancer cells. We have used encapsulation of MSNPs within reconfigurable supported lipid bilayers to develop new classes of responsive nanocarriers that actively interact with the target cell. Toward function 4, we exploit the high surface area and tailorable surface chemistry of MSNPs to retain hydrophobic drugs. Finally, for function 5, we have engineered dynamic behaviors by incorporating molecular machines within or at the entrances of MSNP pores and by using ligands, polymers, or lipid bilayers. These provide a means to seal-in and retain cargo and to direct MSNP interactions with and internalization by target cells. Application of MSNPs as nanocarriers requires biocompatibility and low toxicity. Here the intrinsic porosity of the MSNP surface reduces the extent of hydrogen bonding or electrostatic interactions with cell membranes as does surface coating with polymers or lipid bilayers. Furthermore, the high surface area and low extent of condensation of the MSNP siloxane framework promote a high rate of dissolution into soluble silicic acid species, which are found to be nontoxic. Potential toxicity is further mitigated by the high drug capacity of MSNPs, which greatly reduces needed dosages compared with other nanocarriers. We anticipate that future generations of MSNPs incorporating molecular machines and encapsulated by membrane-like lipid bilayers will achieve a new level of controlled cellular interactions.

摘要

有序介孔硅材料的研究自 20 年前 Mobil 研究人员发现以来已经爆发。使用胶体化学和蒸发诱导自组装来制造均匀尺寸、多孔和分散的纳米粒子的能力导致了介孔硅纳米粒子(MSNPs)作为“纳米载体”的许多应用,用于将药物和其他货物递送到细胞。MSNPs 的极高表面积,通常超过 1000 m²/g,以及独立调节孔径和表面化学的能力,使得能够装载各种货物和货物组合,其装载水平超过其他常见的药物递送载体,如脂质体或聚合物缀合物。这是因为货物与 MSNP 内部表面的非共价静电、氢键和范德华相互作用导致货物优先吸附到 MSNP 上,从而允许装载量超过溶液的溶解度极限或通过渗透梯度装载可实现的装载量。独立修饰 MSNP 表面和内部的能力使得工程生物功能和生物相容性成为可能。在本报告中,我们详细介绍了我们最近开发 MSNPs 作为生物相容性纳米载体的努力(图 1),这些纳米载体同时显示出多种功能,包括(1)在多种成像模式下具有高可见度/对比度,(2)分散性,(3)与特定靶组织或细胞类型的结合特异性,(4)能够装载和递送高浓度的多种货物,以及(5)货物的触发或控制释放。对于功能 1,我们通过化学偶联荧光染料或掺入磁性纳米粒子来实现体内光学或磁共振成像。对于功能 2,我们使用带有聚合物涂层、带电基团或支撑脂质双层的 MSNPs,这可以减少聚集并提高在盐溶液中的稳定性。对于功能 3 和 4,我们通过用带正电荷的聚合物修饰 MSNP 表面来增强被动生物积累,从而增强增强的通透性和保留效应。我们还通过将配体化学连接到 MSNPs 上来修饰 MSNPs,使其选择性地与癌细胞中过度表达的受体结合。我们还使用可重构支撑脂质双层内的 MSNP 封装来开发新类别的响应性纳米载体,这些载体与靶细胞主动相互作用。对于功能 4,我们利用 MSNPs 的高表面积和可调节的表面化学来保留疏水性药物。最后,对于功能 5,我们通过在 MSNP 孔内或孔入口处纳入分子机器以及使用配体、聚合物或脂质双层来设计动态行为。这些提供了一种密封和保留货物的方法,并指导 MSNP 与靶细胞的相互作用和内化。MSNPs 作为纳米载体的应用需要生物相容性和低毒性。这里,MSNP 表面的固有孔隙率降低了与细胞膜的氢键或静电相互作用的程度,而聚合物或脂质双层的表面涂层也是如此。此外,MSNP 硅氧烷骨架的高表面积和低程度的缩合促进了可溶性硅酸物种的快速溶解,这些物种被发现是无毒的。高载药量进一步减轻了 MSNPs 的潜在毒性,与其他纳米载体相比,大大降低了所需剂量。我们预计,未来几代结合分子机器并封装在类膜脂质双层中的 MSNPs 将实现新的受控细胞相互作用水平。

相似文献

[1]
Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility.

Acc Chem Res. 2013-2-6

[2]
Stimuli-responsive mesoporous silica nanoparticles: A custom-tailored next generation approach in cargo delivery.

Mater Sci Eng C Mater Biol Appl. 2021-5

[3]
Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy.

Eur J Pharm Biopharm. 2021-8

[4]
Enhancing Cellular Uptake and Doxorubicin Delivery of Mesoporous Silica Nanoparticles via Surface Functionalization: Effects of Serum.

ACS Appl Mater Interfaces. 2015-12-9

[5]
Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy.

Colloids Surf B Biointerfaces. 2020-1-24

[6]
Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery.

Langmuir. 2018-12-21

[7]
Mesoporous silica nanoparticles trigger mitophagy in endothelial cells and perturb neuronal network activity in a size- and time-dependent manner.

Int J Nanomedicine. 2017-5-8

[8]
Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs.

ACS Nano. 2009-10-27

[9]
Functionalized mesoporous silica nanoparticles in anticancer therapeutics.

Semin Cancer Biol. 2021-2

[10]
Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery Applications.

Curr Drug Deliv. 2022

引用本文的文献

[1]
The Application of Mesoporous Silica Nanoparticles in Enhancing the Efficacy of Anti-Atherosclerosis Therapies: A Review.

Int J Nanomedicine. 2025-8-10

[2]
Unlocking tumor barrier: annexin A2-mediated transcytosis boosts drug delivery in pancreatic and breast tumors.

Nat Commun. 2025-7-15

[3]
An enzyme-responsive hydrogel functionalized with mesoporous silica nanoparticles for co-delivery of cisplatin and shRNA to overcome chemotherapy resistance in non-small cell lung cancer.

RSC Adv. 2025-7-10

[4]
Innovative applications of silicon dioxide nanoparticles for targeted liver cancer treatment.

Front Bioeng Biotechnol. 2025-5-12

[5]
Intrinsic apoptotic effect of Anatolian honeybee () venom promoted with mesoporous silica nanocarriers.

Turk J Biol. 2024-12-30

[6]
CRISPR-Cas9 Gene Therapy: Non-Viral Delivery and Stimuli-Responsive Nanoformulations.

Molecules. 2025-1-24

[7]
A Comprehensive Review: Mesoporous Silica Nanoparticles Greatly Improve Pharmacological Effectiveness of Phytoconstituent in Plant Extracts.

Pharmaceuticals (Basel). 2024-12-13

[8]
Regenerative medicine: Hydrogels and mesoporous silica nanoparticles.

Mater Today Bio. 2024-11-14

[9]
Biomimetic Materials to Fabricate Artificial Cells.

Chem Rev. 2024-12-11

[10]
Macrophage membrane‒biomimetic nanoparticles target inflammatory microenvironment for epilepsy treatment.

Theranostics. 2024

本文引用的文献

[1]
Measurement of Uptake and Release Capacities of Mesoporous Silica Nanoparticles Enabled by Nanovalve Gates.

J Phys Chem C Nanomater Interfaces. 2011-10-13

[2]
Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic.

J Am Chem Soc. 2012-9-17

[3]
Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers.

ACS Nano. 2012-2-14

[4]
Mesoporous silica nanoparticles in biomedical applications.

Chem Soc Rev. 2012-1-3

[5]
SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing.

Nanoscale. 2011-11-18

[6]
Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.

Proc Natl Acad Sci U S A. 2011-6-20

[7]
Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine.

Acc Chem Res. 2011-6-15

[8]
Impact of silica nanoparticle design on cellular toxicity and hemolytic activity.

ACS Nano. 2011-6-8

[9]
Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells.

Small. 2011-5-19

[10]
Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism.

ACS Nano. 2011-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索