Department of Chemical and Nuclear Engineering, the University of New Mexico, Albuquerque, NM 87131, USA.
Acc Chem Res. 2013 Mar 19;46(3):792-801. doi: 10.1021/ar3000986. Epub 2013 Feb 6.
The study of ordered mesoporous silica materials has exploded since their discovery by Mobil researchers 20 years ago. The ability to make uniformly sized, porous, and dispersible nanoparticles using colloidal chemistry and evaporation-induced self-assembly has led to many applications of mesoporous silica nanoparticles (MSNPs) as "nanocarriers" for delivery of drugs and other cargos to cells. The exceptionally high surface area of MSNPs, often exceeding 1000 m²/g, and the ability to independently modify pore size and surface chemistry, enables the loading of diverse cargos and cargo combinations at levels exceeding those of other common drug delivery carriers such as liposomes or polymer conjugates. This is because noncovalent electrostatic, hydrogen-bonding, and van der Waals interactions of the cargo with the MSNP internal surface cause preferential adsorption of cargo to the MSNP, allowing loading capacities to surpass the solubility limit of a solution or that achievable by osmotic gradient loading. The ability to independently modify the MSNP surface and interior makes possible engineered biofunctionality and biocompatibility. In this Account, we detail our recent efforts to develop MSNPs as biocompatible nanocarriers (Figure 1 ) that simultaneously display multiple functions including (1) high visibility/contrast in multiple imaging modalities, (2) dispersibility, (3) binding specificity to a particular target tissue or cell type, (4) ability to load and deliver large concentrations of diverse cargos, and (5) triggered or controlled release of cargo. Toward function 1, we chemically conjugated fluorescent dyes or incorporated magnetic nanoparticles to enable in vivo optical or magnetic resonance imaging. For function 2, we have made MSNPs with polymer coatings, charged groups, or supported lipid bilayers, which decrease aggregation and improve stability in saline solutions. For functions 3 and 4, we have enhanced passive bioaccumulation via the enhanced permeability and retention effect by modifying the MSNP surfaces with positively charged polymers. We have also chemically attached ligands to MSNPs that selectively bind to receptors overexpressed in cancer cells. We have used encapsulation of MSNPs within reconfigurable supported lipid bilayers to develop new classes of responsive nanocarriers that actively interact with the target cell. Toward function 4, we exploit the high surface area and tailorable surface chemistry of MSNPs to retain hydrophobic drugs. Finally, for function 5, we have engineered dynamic behaviors by incorporating molecular machines within or at the entrances of MSNP pores and by using ligands, polymers, or lipid bilayers. These provide a means to seal-in and retain cargo and to direct MSNP interactions with and internalization by target cells. Application of MSNPs as nanocarriers requires biocompatibility and low toxicity. Here the intrinsic porosity of the MSNP surface reduces the extent of hydrogen bonding or electrostatic interactions with cell membranes as does surface coating with polymers or lipid bilayers. Furthermore, the high surface area and low extent of condensation of the MSNP siloxane framework promote a high rate of dissolution into soluble silicic acid species, which are found to be nontoxic. Potential toxicity is further mitigated by the high drug capacity of MSNPs, which greatly reduces needed dosages compared with other nanocarriers. We anticipate that future generations of MSNPs incorporating molecular machines and encapsulated by membrane-like lipid bilayers will achieve a new level of controlled cellular interactions.
有序介孔硅材料的研究自 20 年前 Mobil 研究人员发现以来已经爆发。使用胶体化学和蒸发诱导自组装来制造均匀尺寸、多孔和分散的纳米粒子的能力导致了介孔硅纳米粒子(MSNPs)作为“纳米载体”的许多应用,用于将药物和其他货物递送到细胞。MSNPs 的极高表面积,通常超过 1000 m²/g,以及独立调节孔径和表面化学的能力,使得能够装载各种货物和货物组合,其装载水平超过其他常见的药物递送载体,如脂质体或聚合物缀合物。这是因为货物与 MSNP 内部表面的非共价静电、氢键和范德华相互作用导致货物优先吸附到 MSNP 上,从而允许装载量超过溶液的溶解度极限或通过渗透梯度装载可实现的装载量。独立修饰 MSNP 表面和内部的能力使得工程生物功能和生物相容性成为可能。在本报告中,我们详细介绍了我们最近开发 MSNPs 作为生物相容性纳米载体的努力(图 1),这些纳米载体同时显示出多种功能,包括(1)在多种成像模式下具有高可见度/对比度,(2)分散性,(3)与特定靶组织或细胞类型的结合特异性,(4)能够装载和递送高浓度的多种货物,以及(5)货物的触发或控制释放。对于功能 1,我们通过化学偶联荧光染料或掺入磁性纳米粒子来实现体内光学或磁共振成像。对于功能 2,我们使用带有聚合物涂层、带电基团或支撑脂质双层的 MSNPs,这可以减少聚集并提高在盐溶液中的稳定性。对于功能 3 和 4,我们通过用带正电荷的聚合物修饰 MSNP 表面来增强被动生物积累,从而增强增强的通透性和保留效应。我们还通过将配体化学连接到 MSNPs 上来修饰 MSNPs,使其选择性地与癌细胞中过度表达的受体结合。我们还使用可重构支撑脂质双层内的 MSNP 封装来开发新类别的响应性纳米载体,这些载体与靶细胞主动相互作用。对于功能 4,我们利用 MSNPs 的高表面积和可调节的表面化学来保留疏水性药物。最后,对于功能 5,我们通过在 MSNP 孔内或孔入口处纳入分子机器以及使用配体、聚合物或脂质双层来设计动态行为。这些提供了一种密封和保留货物的方法,并指导 MSNP 与靶细胞的相互作用和内化。MSNPs 作为纳米载体的应用需要生物相容性和低毒性。这里,MSNP 表面的固有孔隙率降低了与细胞膜的氢键或静电相互作用的程度,而聚合物或脂质双层的表面涂层也是如此。此外,MSNP 硅氧烷骨架的高表面积和低程度的缩合促进了可溶性硅酸物种的快速溶解,这些物种被发现是无毒的。高载药量进一步减轻了 MSNPs 的潜在毒性,与其他纳米载体相比,大大降低了所需剂量。我们预计,未来几代结合分子机器并封装在类膜脂质双层中的 MSNPs 将实现新的受控细胞相互作用水平。
Acc Chem Res. 2013-2-6
Mater Sci Eng C Mater Biol Appl. 2021-5
Eur J Pharm Biopharm. 2021-8
ACS Appl Mater Interfaces. 2015-12-9
Colloids Surf B Biointerfaces. 2020-1-24
Semin Cancer Biol. 2021-2
Front Bioeng Biotechnol. 2025-5-12
Pharmaceuticals (Basel). 2024-12-13
Mater Today Bio. 2024-11-14
Chem Rev. 2024-12-11
J Phys Chem C Nanomater Interfaces. 2011-10-13
J Am Chem Soc. 2012-9-17
Chem Soc Rev. 2012-1-3
Proc Natl Acad Sci U S A. 2011-6-20
Acc Chem Res. 2011-6-15