Gurgenidze Ana, Krylov Anna I, Takahashi Susumu
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United States.
J Phys Chem Lett. 2025 Jun 19;16(24):5906-5911. doi: 10.1021/acs.jpclett.5c00677. Epub 2025 Jun 5.
We present a computational study characterizing the effect of hydrostatic pressure on magnetic spin parameters that are used to analyze the electron paramagnetic resonance (EPR) spectra. Site-directed spin labeling (SDSL) in combination with EPR spectroscopy is a powerful tool for investigating the structure and dynamics of biological molecules. In studies using SDSL-based EPR spectroscopy, it is essential to know the spin parameters, such as the factor and the hyperfine constants, precisely. However, the experimental characterization of these spin parameters under extreme conditions is often challenging. We report quantum chemistry calculations of tensors and hyperfine coupling tensors ( tensors) for the nitroxide radical spin label in the pressure range of 0-15 GPa. The hydrostatic pressure causes structural changes, which, in turn, result in linear changes of the and tensors. The observed linear dependence of the and tensors suggests that these quantities can serve as reporters of local pressure in complex environments. The corresponding simulated EPR spectra at 9 and 230 GHz reveal that the changes of the EPR spectrum are more pronounced in the former. Our results indicate that the computational approach can address the challenge of determining magnetic spin parameters under extreme conditions, such as under high hydrostatic pressure.
我们展示了一项计算研究,该研究表征了静水压力对用于分析电子顺磁共振(EPR)光谱的磁自旋参数的影响。定点自旋标记(SDSL)与EPR光谱相结合是研究生物分子结构和动力学的有力工具。在使用基于SDSL的EPR光谱的研究中,精确了解自旋参数(如g因子和超精细常数)至关重要。然而,在极端条件下对这些自旋参数进行实验表征往往具有挑战性。我们报告了在0 - 15 GPa压力范围内对硝基自由基自旋标记的g张量和超精细耦合张量(A张量)的量子化学计算。静水压力会导致结构变化,进而导致g张量和A张量的线性变化。观察到的g张量和A张量的线性依赖性表明,这些量可作为复杂环境中局部压力的报告者。在9 GHz和230 GHz下相应的模拟EPR光谱表明,EPR光谱的变化在前者中更为明显。我们的结果表明,该计算方法可以应对在极端条件下(如高静水压力下)确定磁自旋参数的挑战。