Suppr超能文献

超越结构:从基于双组氨酸的 EPR 测量中解析蛋白质的位点特异性动力学。

Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements.

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Protein Sci. 2022 Jul;31(7):e4359. doi: 10.1002/pro.4359.

Abstract

Site-specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site-specific β-sheet dynamics. Here, we employed EPR spectroscopy to measure site-specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) - nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α-helical and β-sheet sites. Spectral simulations of the resulting CW-EPR report unique site-specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes in g values for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA-based EPR measurements to probe information beyond distance constraints.

摘要

蛋白质中的特定位置动力学是蛋白质功能的核心。虽然电子顺磁共振(EPR)有可能测量大蛋白质复合物中的动力学,但对灵活的氮氧自由基标记的依赖限制了其应用,特别是对于准确测量特定β-折叠动力学。在这里,我们使用 EPR 光谱法测量蛋白质 GB1 表面的特定位置动力学。通过使用双组氨酸(dHis)基序,可以用 Cu(II)-氮三乙酸(NTA)络合物进行标记,从而获得α-螺旋和β-折叠位置的动力学信息。所得 CW-EPR 的光谱模拟报告了 GB1 表面独特的特定位置波动。此外,我们还进行了分子动力学(MD)模拟来补充 EPR 数据。从 MD 观察到的动力学与 EPR 结果一致。此外,我们观察到不同位置 g 值的微小变化,这可能是由于位置的配位几何和/或局部静电的微小差异。总之,这项工作扩展了基于 Cu(II)NTA 的 EPR 测量在探测距离约束以外信息的应用。

相似文献

2
Going the dHis-tance: Site-Directed Cu Labeling of Proteins and Nucleic Acids.
Acc Chem Res. 2021 Mar 16;54(6):1481-1491. doi: 10.1021/acs.accounts.0c00761. Epub 2021 Jan 21.
3
Differentiating between Label and Protein Conformers in Pulsed Dipolar EPR Spectroscopy with the dHis-Cu (NTA) Motif.
Chemistry. 2023 Dec 22;29(72):e202302541. doi: 10.1002/chem.202302541. Epub 2023 Nov 6.
4
Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site-Specific Elucidation of Hidden Dynamics in Enzymes.
Angew Chem Int Ed Engl. 2020 Dec 14;59(51):23040-23044. doi: 10.1002/anie.202009982. Epub 2020 Oct 13.
6
The double-histidine Cu²⁺-binding motif: a highly rigid, site-specific spin probe for electron spin resonance distance measurements.
Angew Chem Int Ed Engl. 2015 May 18;54(21):6330-4. doi: 10.1002/anie.201501968. Epub 2015 Mar 27.
8
Buffer effects on site directed Cu-labeling using the double histidine motif.
J Magn Reson. 2020 Nov;320:106848. doi: 10.1016/j.jmr.2020.106848. Epub 2020 Oct 9.
10
Modeling of Cu(II)-based protein spin labels using rotamer libraries.
Phys Chem Chem Phys. 2024 Feb 22;26(8):6806-6816. doi: 10.1039/d3cp05951k.

引用本文的文献

2
Endogenous Cu(II) Labeling for Distance Measurements on Proteins by EPR.
Chemistry. 2024 Dec 23;30(72):e202403160. doi: 10.1002/chem.202403160. Epub 2024 Nov 11.
3
The chromatin remodeler SMARCA5 binds to d-block metal supports: Characterization of affinities by IMAC chromatography and QM analysis.
PLoS One. 2024 Oct 7;19(10):e0309134. doi: 10.1371/journal.pone.0309134. eCollection 2024.
4
Modeling of Cu(II)-based protein spin labels using rotamer libraries.
Phys Chem Chem Phys. 2024 Feb 22;26(8):6806-6816. doi: 10.1039/d3cp05951k.
5
The use of EPR spectroscopy to study transcription mechanisms.
Biophys Rev. 2022 Oct 25;14(5):1141-1159. doi: 10.1007/s12551-022-01004-x. eCollection 2022 Oct.

本文引用的文献

1
An optimal acquisition scheme for Q-band EPR distance measurements using Cu-based protein labels.
Phys Chem Chem Phys. 2022 Jun 22;24(24):14727-14739. doi: 10.1039/d2cp01032a.
2
Human CEACAM1 N-domain dimerization is independent from glycan modifications.
Structure. 2022 May 5;30(5):658-670.e5. doi: 10.1016/j.str.2022.02.003. Epub 2022 Feb 25.
4
Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy.
Proc Natl Acad Sci U S A. 2021 Dec 14;118(50). doi: 10.1073/pnas.2116325118.
5
Nanomolar Pulse Dipolar EPR Spectroscopy in Proteins: Cu-Cu and Nitroxide-Nitroxide Cases.
J Phys Chem B. 2021 May 27;125(20):5358-5364. doi: 10.1021/acs.jpcb.1c03666. Epub 2021 May 17.
6
dHis-troying Barriers: Deuteration Provides a Pathway to Increase Sensitivity and Accessible Distances for Cu Labels.
J Phys Chem Lett. 2021 May 20;12(19):4681-4685. doi: 10.1021/acs.jpclett.1c01002. Epub 2021 May 12.
7
Pulse Dipolar EPR Reveals Double-Histidine Motif Cu-NTA Spin-Labeling Robustness against Competitor Ions.
J Phys Chem Lett. 2021 Mar 25;12(11):2815-2819. doi: 10.1021/acs.jpclett.1c00211. Epub 2021 Mar 13.
8
Going the dHis-tance: Site-Directed Cu Labeling of Proteins and Nucleic Acids.
Acc Chem Res. 2021 Mar 16;54(6):1481-1491. doi: 10.1021/acs.accounts.0c00761. Epub 2021 Jan 21.
10
Buffer effects on site directed Cu-labeling using the double histidine motif.
J Magn Reson. 2020 Nov;320:106848. doi: 10.1016/j.jmr.2020.106848. Epub 2020 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验