Suppr超能文献

由噪声纠缠辅助的量子信道的加法经典容量

Additive Classical Capacity of Quantum Channels Assisted by Noisy Entanglement.

作者信息

Zhuang Quntao, Zhu Elton Yechao, Shor Peter W

机构信息

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Phys Rev Lett. 2017 May 19;118(20):200503. doi: 10.1103/PhysRevLett.118.200503.

Abstract

We give a capacity formula for the classical information transmission over a noisy quantum channel, with separable encoding by the sender and limited resources provided by the receiver's preshared ancilla. Instead of a pure state, we consider the signal-ancilla pair in a mixed state, purified by a "witness." Thus, the signal-witness correlation limits the resource available from the signal-ancilla correlation. Our formula characterizes the utility of different forms of resources, including noisy or limited entanglement assistance, for classical communication. With separable encoding, the sender's signals across multiple channel uses are still allowed to be entangled, yet our capacity formula is additive. In particular, for generalized covariant channels, our capacity formula has a simple closed form. Moreover, our additive capacity formula upper bounds the general coherent attack's information gain in various two-way quantum key distribution protocols. For Gaussian protocols, the additivity of the formula indicates that the collective Gaussian attack is the most powerful.

摘要

我们给出了在有噪声量子信道上进行经典信息传输的容量公式,其中发送方采用可分离编码,接收方通过预共享辅助系统提供有限资源。我们考虑的不是纯态,而是处于混合态的信号 - 辅助系统对,通过一个“见证者”进行纯化。因此,信号 - 见证者相关性限制了从信号 - 辅助系统相关性中获得的可用资源。我们的公式刻画了不同形式资源(包括有噪声或有限的纠缠辅助)对于经典通信的效用。在可分离编码的情况下,发送方在多次信道使用中的信号仍允许纠缠,但我们的容量公式是可加的。特别地,对于广义协变信道,我们的容量公式具有简单的封闭形式。此外,我们的可加容量公式为各种双向量子密钥分发协议中一般相干攻击的信息增益提供了上限。对于高斯协议,该公式的可加性表明集体高斯攻击是最强大的。

相似文献

1
Additive Classical Capacity of Quantum Channels Assisted by Noisy Entanglement.
Phys Rev Lett. 2017 May 19;118(20):200503. doi: 10.1103/PhysRevLett.118.200503.
2
Superadditivity of the Classical Capacity with Limited Entanglement Assistance.
Phys Rev Lett. 2017 Jul 28;119(4):040503. doi: 10.1103/PhysRevLett.119.040503. Epub 2017 Jul 27.
3
Quantum-Enabled Communication without a Phase Reference.
Phys Rev Lett. 2021 Feb 12;126(6):060502. doi: 10.1103/PhysRevLett.126.060502.
4
Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity.
Phys Rev Lett. 2021 Jun 25;126(25):250501. doi: 10.1103/PhysRevLett.126.250501.
5
Unbounded number of channel uses may be required to detect quantum capacity.
Nat Commun. 2015 Mar 31;6:6739. doi: 10.1038/ncomms7739.
6
Quantum versus classical correlations in Gaussian states.
Phys Rev Lett. 2010 Jul 16;105(3):030501. doi: 10.1103/PhysRevLett.105.030501. Epub 2010 Jul 15.
7
Coherence of assistance and assisted maximally coherent states.
Sci Rep. 2021 Mar 15;11(1):5935. doi: 10.1038/s41598-021-85273-8.
8
Entangled inputs cannot make imperfect quantum channels perfect.
Phys Rev Lett. 2011 Jun 10;106(23):230502. doi: 10.1103/PhysRevLett.106.230502.
9
Entanglement can completely defeat quantum noise.
Phys Rev Lett. 2011 Dec 16;107(25):250504. doi: 10.1103/PhysRevLett.107.250504. Epub 2011 Dec 15.
10
Quantum error correction assisted by two-way noisy communication.
Sci Rep. 2014 Nov 26;4:7203. doi: 10.1038/srep07203.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验