Hirota Morihiko, Fukui Shiho, Okamoto Kenji, Kurotani Satoru, Imai Noriyasu, Fujishiro Miyuki, Kyotani Daiki, Kato Yoshinao, Kasahara Toshihiko, Fujita Masaharu, Toyoda Akemi, Sekiya Daisuke, Watanabe Shinichi, Seto Hirokazu, Takenouchi Osamu, Ashikaga Takao, Miyazawa Masaaki
Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa, 224-8558, Japan.
Kanebo Cosmetics Inc., 3-28, Kotobukicho 5-chome, Odawara, Kanagawa, 250-0002, Japan.
J Appl Toxicol. 2015 Nov;35(11):1333-47. doi: 10.1002/jat.3105. Epub 2015 Mar 30.
The skin sensitization potential of chemicals has been determined with the use of the murine local lymph node assay (LLNA). However, in recent years public concern about animal welfare has led to a requirement for non-animal risk assessment systems for the prediction of skin sensitization potential, to replace LLNA. Selection of an appropriate in vitro test or in silico model descriptors is critical to obtain good predictive performance. Here, we investigated the utility of artificial neural network (ANN) prediction models using various combinations of descriptors from several in vitro sensitization tests. The dataset, collected from published data and from experiments carried out in collaboration with the Japan Cosmetic Industry Association (JCIA), consisted of values from the human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA), SH test and antioxidant response element (ARE) assay for chemicals whose LLNA thresholds have been reported. After confirming the relationship between individual in vitro test descriptors and the LLNA threshold (e.g. EC3 value), we used the subsets of chemicals for which the requisite test values were available to evaluate the predictive performance of ANN models using combinations of h-CLAT/DPRA (N = 139 chemicals), the DPRA/ARE assay (N = 69), the SH test/ARE assay (N = 73), the h-CLAT/DPRA/ARE assay (N = 69) and the h-CLAT/SH test/ARE assay (N = 73). The h-CLAT/DPRA, h-CLAT/DPRA/ARE assay and h-CLAT/SH test/ARE assay combinations showed a better predictive performance than the DPRA/ARE assay and the SH test/ARE assay. Our data indicates that the descriptors evaluated in this study were all useful for predicting human skin sensitization potential, although combinations containing h-CLAT (reflecting dendritic cell-activating ability) were most effective for ANN-based prediction.
化学物质的皮肤致敏潜力已通过小鼠局部淋巴结试验(LLNA)来确定。然而,近年来,公众对动物福利的关注导致需要非动物风险评估系统来预测皮肤致敏潜力,以取代LLNA。选择合适的体外试验或计算机模拟模型描述符对于获得良好的预测性能至关重要。在此,我们研究了使用来自几种体外致敏试验的描述符的各种组合的人工神经网络(ANN)预测模型的效用。该数据集收集自已发表的数据以及与日本化妆品工业协会(JCIA)合作开展的实验,由人类细胞系激活试验(h-CLAT)、直接肽反应性测定(DPRA)、SH试验和抗氧化反应元件(ARE)试验的化学物质的值组成,这些化学物质的LLNA阈值已被报道。在确认各个体外试验描述符与LLNA阈值(如EC3值)之间的关系后,我们使用有必要试验值的化学物质子集,通过h-CLAT/DPRA组合(N = 139种化学物质)、DPRA/ARE试验(N = 69)、SH试验/ARE试验(N = 73)、h-CLAT/DPRA/ARE试验(N = 69)和h-CLAT/SH试验/ARE试验(N = 73)来评估ANN模型的预测性能。h-CLAT/DPRA、h-CLAT/DPRA/ARE试验和h-CLAT/SH试验/ARE试验组合显示出比DPRA/ARE试验和SH试验/ARE试验更好的预测性能。我们的数据表明,本研究中评估的描述符对于预测人类皮肤致敏潜力都很有用,尽管包含h-CLAT(反映树突状细胞激活能力)的组合对于基于ANN的预测最有效。