Tsujita-Inoue Kyoko, Hirota Morihiko, Ashikaga Takao, Atobe Tomomi, Kouzuki Hirokazu, Aiba Setsuya
Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan.
Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan.
Toxicol In Vitro. 2014 Jun;28(4):626-39. doi: 10.1016/j.tiv.2014.01.003. Epub 2014 Jan 18.
The sensitizing potential of chemicals is usually identified and characterized using in vivo methods such as the murine local lymph node assay (LLNA). Due to regulatory constraints and ethical concerns, alternatives to animal testing are needed to predict skin sensitization potential of chemicals. For this purpose, combined evaluation using multiple in vitro and in silico parameters that reflect different aspects of the sensitization process seems promising. We previously reported that LLNA thresholds could be well predicted by using an artificial neural network (ANN) model, designated iSENS ver.1 (integrating in vitro sensitization tests version 1), to analyze data obtained from two in vitro tests: the human Cell Line Activation Test (h-CLAT) and the SH test. Here, we present a more advanced ANN model, iSENS ver.2, which additionally utilizes the results of antioxidant response element (ARE) assay and the octanol-water partition coefficient (LogP, reflecting lipid solubility and skin absorption). We found a good correlation between predicted LLNA thresholds calculated by iSENS ver.2 and reported values. The predictive performance of iSENS ver.2 was superior to that of iSENS ver.1. We conclude that ANN analysis of data from multiple in vitro assays is a useful approach for risk assessment of chemicals for skin sensitization.
化学品的致敏潜力通常使用体内方法来识别和表征,如小鼠局部淋巴结试验(LLNA)。由于监管限制和伦理问题,需要动物试验的替代方法来预测化学品的皮肤致敏潜力。为此,使用反映致敏过程不同方面的多个体外和计算机模拟参数进行联合评估似乎很有前景。我们之前报道过,通过使用人工神经网络(ANN)模型(命名为iSENS ver.1,即整合体外致敏试验版本1)来分析从两项体外试验(人类细胞系激活试验(h-CLAT)和SH试验)获得的数据,可以很好地预测LLNA阈值。在此,我们展示了一个更先进的ANN模型,iSENS ver.2,它还利用了抗氧化反应元件(ARE)试验的结果和辛醇-水分配系数(LogP,反映脂溶性和皮肤吸收)。我们发现iSENS ver.2计算出的预测LLNA阈值与报告值之间具有良好的相关性。iSENS ver.2的预测性能优于iSENS ver.1。我们得出结论,对来自多个体外试验的数据进行人工神经网络分析是化学品皮肤致敏风险评估的一种有用方法。