Suppr超能文献

通过RNAome测序解析RNA全景图。

Deciphering the RNA landscape by RNAome sequencing.

作者信息

Derks Kasper W J, Misovic Branislav, van den Hout Mirjam C G N, Kockx Christel E M, Gomez Cesar Payan, Brouwer Rutger W W, Vrieling Harry, Hoeijmakers Jan H J, van IJcken Wilfred F J, Pothof Joris

机构信息

a Department of Genetics; Netherlands Toxicogenomics Center; Erasmus University Medical Center ; Rotterdam , The Netherlands.

出版信息

RNA Biol. 2015;12(1):30-42. doi: 10.1080/15476286.2015.1017202.

Abstract

Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods.

摘要

目前的RNA表达谱分析方法依赖于对特定RNA类别的富集步骤,因此无法以无干扰的方式检测所有RNA种类。我们报告了链特异性RNAome测序技术,该技术可在单次测序中从去除rRNA的总RNA中确定小RNA和大RNA的表达。由于目前的分析流程无法可靠地同时分析小RNA和大RNA,我们开发了TRAP(Total Rna Analysis Pipeline),这是一个强大的界面,也与现有的RNA测序协议兼容。RNAome测序定量保留了所有RNA类别,允许进行跨类别比较,有助于识别不同RNA类别之间的关系。我们展示了RNAome测序在顺铂处理的小鼠胚胎干细胞中的优势。RNAome测序中的microRNA和mRNA表达在重复样本之间显著相关,并且与现有的RNA测序方法以及从相同样本生成的基因表达阵列一致。此外,RNAome测序还检测到了其他RNA类别,如增强子RNA、反义RNA、新型RNA种类以及许多其他方法无法检测到的差异表达RNA。在完整RNA类别的层面上,RNAome测序还发现顺铂处理后microRNA和microRNA异构体类别存在特定的全局抑制,而所有其他类别,如mRNA则没有变化。RNAome测序的这些特性将显著改善表达分析以及现有方法未涵盖的RNA生物学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3304/4615683/fca32e0f48eb/krnb-12-01-1017202-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验