Suppr超能文献

刺激集大小和人工语法学习中语法的统计覆盖范围。

Stimulus set size and statistical coverage of the grammar in artificial grammar learning.

机构信息

Institute of Psychology, Leiden University, Leiden, The Netherlands.

出版信息

Psychon Bull Rev. 2009 Dec;16(6):1058-64. doi: 10.3758/PBR.16.6.1058.

Abstract

Adults and children acquire knowledge of the structure of their environment on the basis of repeated exposure to samples of structured stimuli. In the study of inductive learning, a straightforward issue is how much sample information is needed to learn the structure. The present study distinguishes between two measures for the amount of information in the sample: set size and the extent to which the set of exemplars statistically covers the underlying structure. In an artificial grammar learning experiment, learning was affected by the sample's statistical coverage of the grammar, but not by its mere size. Our result suggests an alternative explanation of the set size effects on learning found in previous studies (McAndrews & Moscovitch, 1985; Meulemans & Van der Linden, 1997), because, as we argue, set size was confounded with statistical coverage in these studies.

摘要

成人和儿童是在反复接触有结构的刺激样本的基础上获得环境结构知识的。在归纳学习的研究中,一个直接的问题是需要多少样本信息来学习结构。本研究区分了样本中信息量的两个度量:集大小和样本集在多大程度上统计上涵盖了基础结构。在一项人工语法学习实验中,学习受到样本对语法的统计覆盖的影响,但不受样本大小的影响。我们的结果为之前研究中发现的样本大小对学习的影响提供了另一种解释(McAndrews & Moscovitch, 1985; Meulemans & Van der Linden, 1997),因为正如我们所认为的,在这些研究中,样本大小与统计覆盖度是混淆的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验