Minini Lucía, Álvarez Guzmán, González Mercedes, Cerecetto Hugo, Merlino Alicia
Laboratorio de Química Teórica y Computacional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
J Mol Graph Model. 2015 May;58:40-9. doi: 10.1016/j.jmgm.2015.02.002. Epub 2015 Feb 21.
Trypanosoma cruzi (T. cruzi) triosephosphate isomerase (TcTIM) is a glycolytic enzyme essential for parasite survival and has been considered an interesting target for the development of new antichagasic compounds. The homodimeric enzyme is catalytically active only as a dimer. Interestingly, significant differences exist between the human and parasite TIMs interfaces with a sequence identity of 52%. Therefore, compounds able to specifically disrupt TcTIM but not Homo sapiens TIM (hTIM) dimer interface could become selective antichagasic drugs. In the present work, the binding modes of 1,2,4-thiadiazol, phenazine and 1,2,6-thiadiazine derivatives to TcTIM were investigated using molecular docking combined with molecular dynamics (MD) simulations. The results show that phenazine and 1,2,6-thiadiazine derivatives, 2 and 3, act as dimer-disrupting inhibitors of TcTIM having also allosteric effects in the conformation of the active site. On the other hand, the 1,2,4-thiadiazol derivative 1 binds into the active site causing a significant decrease in enzyme mobility in both monomers. The loss of conformational flexibility upon compound 1 binding suggests that this inhibitor could be preventing essential motions of the enzyme required for optimal activity. The lack of inhibitory activity of 1 against hTIM was also investigated and seems to be related with the high mobility of hTIM which would hinder the formation of a stable ligand-enzyme complex. This work has contributed to understand the mechanism of action of this kind of inhibitors and could result of great help for future rational novel drug design.
克氏锥虫(T. cruzi)磷酸丙糖异构酶(TcTIM)是一种对寄生虫生存至关重要的糖酵解酶,被认为是开发新型抗恰加斯病化合物的一个有趣靶点。这种同二聚体酶只有作为二聚体时才具有催化活性。有趣的是,人类和寄生虫的TIMs界面存在显著差异,序列同一性为52%。因此,能够特异性破坏TcTIM而非人类TIM(hTIM)二聚体界面的化合物可能成为选择性抗恰加斯病药物。在本研究中,使用分子对接结合分子动力学(MD)模拟研究了1,2,4 - 噻二唑、吩嗪和1,2,6 - 噻二嗪衍生物与TcTIM的结合模式。结果表明,吩嗪和1,2,6 - 噻二嗪衍生物2和3作为TcTIM的二聚体破坏抑制剂,对活性位点的构象也具有变构效应。另一方面,1,2,4 - 噻二唑衍生物1结合到活性位点,导致两个单体中酶的流动性显著降低。化合物1结合后构象灵活性的丧失表明,这种抑制剂可能阻止了酶发挥最佳活性所需的基本运动。还研究了1对hTIM缺乏抑制活性的情况,这似乎与hTIM的高流动性有关,高流动性会阻碍稳定的配体 - 酶复合物的形成。这项工作有助于理解这类抑制剂的作用机制,可能对未来合理设计新型药物有很大帮助。