Science for Life Laboratory, Department of Chemistry - BMC , Uppsala University, BMC , Box 576, S-751 23 Uppsala , Sweden.
Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States.
J Am Chem Soc. 2019 Oct 9;141(40):16139-16150. doi: 10.1021/jacs.9b08713. Epub 2019 Sep 25.
We report results of detailed empirical valence bond simulations that model the effect of several amino acid substitutions on the thermodynamic (Δ°) and kinetic activation (Δ) barriers to deprotonation of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) bound to wild-type triosephosphate isomerase (TIM), as well as to the K12G, E97A, E97D, E97Q, K12G/E97A, I170A, L230A, I170A/L230A, and P166A variants of this enzyme. The EVB simulations model the observed effect of the P166A mutation on protein structure. The E97A, E97Q, and E97D mutations of the conserved E97 side chain result in ≤1.0 kcal mol decreases in the activation barrier for substrate deprotonation. The agreement between experimental and computed activation barriers is within ±1 kcal mol, with a strong linear correlation between Δ and Δ for all 11 variants, with slopes β = 0.73 ( = 0.994) and β = 0.74 ( = 0.995) for the deprotonation of DHAP and GAP, respectively. These Brønsted-type correlations show that the amino acid side chains examined in this study function to reduce the standard-state Gibbs free energy of reaction for deprotonation of the weak α-carbonyl carbon acid substrate to form the enediolate phosphate reaction intermediate. TIM utilizes the cationic side chain of K12 to provide direct electrostatic stabilization of the enolate oxyanion, and the nonpolar side chains of P166, I170, and L230 are utilized for the construction of an active-site cavity that provides optimal stabilization of the enediolate phosphate intermediate relative to the carbon acid substrate.
我们报告了详细的经验价键模拟结果,这些模拟模型了几种氨基酸取代对结合野生型磷酸丙糖异构酶(TIM)的二羟丙酮磷酸(DHAP)和 d-甘油醛 3-磷酸(GAP)的去质子化的热力学(Δ°)和动力学激活(Δ)能垒的影响,以及 K12G、E97A、E97D、E97Q、K12G/E97A、I170A、L230A、I170A/L230A 和 P166A 变体的影响。EVB 模拟模型了观察到的 P166A 突变对蛋白质结构的影响。保守的 E97 侧链的 E97A、E97Q 和 E97D 突变导致底物去质子化的激活能垒降低了≤1.0 kcal/mol。实验和计算得到的激活能垒之间的一致性在±1 kcal/mol 以内,对于所有 11 种变体,DHAP 和 GAP 的去质子化的Δ和Δ之间存在很强的线性相关性,斜率β=0.73(=0.994)和β=0.74(=0.995)。这些 Brønsted 型相关性表明,在这项研究中检查的氨基酸侧链的作用是降低反应的标准状态吉布斯自由能,从而使弱 α-羰基碳酸底物去质子化形成烯醇磷酸反应中间体。TIM 利用 K12 的阳离子侧链为烯醇阴离子提供直接的静电稳定,而 P166、I170 和 L230 的非极性侧链用于构建一个活性位点腔,为烯醇磷酸中间体相对于碳酸底物提供最佳稳定化。