Luo Xiangyi, Piernavieja-Hermida Mar, Lu Jun, Wu Tianpin, Wen Jianguo, Ren Yang, Miller Dean, Zak Fang Zhigang, Lei Yu, Amine Khalil
Chemical Sciences and Engineering Division, Argonne National Labaratory, Argonne, IL 60439, USA. Metallurgical Engineering Department, University of Utah, Salt Lake City, UT 84112, USA.
Nanotechnology. 2015 Apr 24;26(16):164003. doi: 10.1088/0957-4484/26/16/164003. Epub 2015 Apr 1.
Uniformly dispersed Pd nanoparticles on ZnO-passivated porous carbon were synthesized via an atomic layer deposition (ALD) technique, which was tested as a cathode material in a rechargeable Li-O2 battery, showing a highly active catalytic effect toward the electrochemical reactions-in particular, the oxygen evolution reaction. Transmission electron microscopy (TEM) showed discrete crystalline nanoparticles decorating the surface of the ZnO-passivated porous carbon support in which the size could be controlled in the range of 3-6 nm, depending on the number of Pd ALD cycles performed. X-ray absorption spectroscopy (XAS) at the Pd K-edge revealed that the carbon-supported Pd existed in a mixed phase of metallic palladium and palladium oxide. The ZnO-passivated layer effectively blocks the defect sites on the carbon surface, minimizing the electrolyte decomposition. Our results suggest that ALD is a promising technique for tailoring the surface composition and structure of nanoporous supports for Li-O2 batteries.
通过原子层沉积(ALD)技术在氧化锌钝化的多孔碳上合成了均匀分散的钯纳米颗粒,该材料作为可充电锂氧电池的阴极材料进行了测试,对电化学反应,特别是析氧反应表现出高度活性的催化作用。透射电子显微镜(TEM)显示离散的结晶纳米颗粒装饰在氧化锌钝化的多孔碳载体表面,其尺寸可根据进行的钯ALD循环次数控制在3-6纳米范围内。钯K边的X射线吸收光谱(XAS)表明,碳负载的钯以金属钯和氧化钯的混合相存在。氧化锌钝化层有效地阻挡了碳表面的缺陷位点,使电解质分解最小化。我们的结果表明,ALD是一种有前途的技术,可用于定制锂氧电池纳米多孔载体的表面组成和结构。