Kang Yun Kyoung, Putluri Nagireddy, Maity Suman, Tsimelzon Anna, Ilkayeva Olga, Mo Qianxing, Lonard David, Michailidis George, Sreekumar Arun, Newgard Christopher B, Wang Meng, Tsai Sophia Y, Tsai Ming-Jer, O'Malley Bert W
Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America.
Verna and Marrs McLean Department of Biochemistry and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS Genet. 2015 Apr 1;11(4):e1005116. doi: 10.1371/journal.pgen.1005116. eCollection 2015 Apr.
Ever since we developed mitochondria to generate ATP, eukaryotes required intimate mito-nuclear communication. In addition, since reactive oxygen species are a cost of mitochondrial oxidative phosphorylation, this demands safeguards as protection from these harmful byproducts. Here we identified a critical transcriptional integrator which eukaryotes share to orchestrate both nutrient-induced mitochondrial energy metabolism and stress-induced nuclear responses, thereby maintaining carbon-nitrogen balance, and preserving life span and reproductive capacity. Inhibition of nutrient-induced expression of CAPER arrests nutrient-dependent cell proliferation and ATP generation and induces autophagy-mediated vacuolization. Nutrient signaling to CAPER induces mitochondrial transcription and glucose-dependent mitochondrial respiration via coactivation of nuclear receptor ERR-α-mediated Gabpa transcription. CAPER is also a coactivator for NF-κB that directly regulates c-Myc to coordinate nuclear transcriptome responses to mitochondrial stress. Finally, CAPER is responsible for anaplerotic carbon flux into TCA cycles from glycolysis, amino acids and fatty acids in order to maintain cellular energy metabolism to counter mitochondrial stress. Collectively, our studies reveal CAPER as an evolutionarily conserved 'master' regulatory mechanism by which eukaryotic cells control vital homeostasis for both ATP and antioxidants via CAPER-dependent coordinated control of nuclear and mitochondrial transcriptomic programs and their metabolisms. These CAPER dependent bioenergetic programs are highly conserved, as we demonstrated that they are essential to preserving life span and reproductive capacity in human cells-and even in C. elegans.
自从我们进化出利用线粒体来生成三磷酸腺苷(ATP)以来,真核生物就需要线粒体与细胞核之间进行密切的交流。此外,由于活性氧是线粒体氧化磷酸化的一种代价,这就需要有保护措施来抵御这些有害的副产物。在这里,我们鉴定出一种关键的转录整合因子,真核生物通过它来协调营养物质诱导的线粒体能量代谢和应激诱导的细胞核反应,从而维持碳氮平衡,并保持寿命和生殖能力。抑制营养物质诱导的Caper表达会阻止营养物质依赖的细胞增殖和ATP生成,并诱导自噬介导的空泡化。营养物质向Caper的信号传导通过核受体ERR-α介导的Gabpa转录的共激活来诱导线粒体转录和葡萄糖依赖性线粒体呼吸。Caper也是核因子κB(NF-κB)的共激活因子,它直接调节c-Myc以协调整个核转录组对线粒体应激的反应。最后,Caper负责从糖酵解、氨基酸和脂肪酸向三羧酸循环的回补性碳通量,以维持细胞能量代谢来应对线粒体应激。总的来说,我们的研究揭示Caper是一种进化上保守的“主要”调节机制,通过它真核细胞通过对细胞核和线粒体转录组程序及其代谢的Caper依赖性协调控制来控制ATP和抗氧化剂的重要稳态。这些依赖Caper的生物能量程序高度保守,因为我们证明它们对于维持人类细胞甚至秀丽隐杆线虫的寿命和生殖能力至关重要。