文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

In vivo genome editing using Staphylococcus aureus Cas9.

作者信息

Ran F Ann, Cong Le, Yan Winston X, Scott David A, Gootenberg Jonathan S, Kriz Andrea J, Zetsche Bernd, Shalem Ophir, Wu Xuebing, Makarova Kira S, Koonin Eugene V, Sharp Phillip A, Zhang Feng

机构信息

1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA.

1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.


DOI:10.1038/nature14299
PMID:25830891
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4393360/
Abstract

The RNA-guided endonuclease Cas9 has emerged as a versatile genome-editing platform. However, the size of the commonly used Cas9 from Streptococcus pyogenes (SpCas9) limits its utility for basic research and therapeutic applications that use the highly versatile adeno-associated virus (AAV) delivery vehicle. Here, we characterize six smaller Cas9 orthologues and show that Cas9 from Staphylococcus aureus (SaCas9) can edit the genome with efficiencies similar to those of SpCas9, while being more than 1 kilobase shorter. We packaged SaCas9 and its single guide RNA expression cassette into a single AAV vector and targeted the cholesterol regulatory gene Pcsk9 in the mouse liver. Within one week of injection, we observed >40% gene modification, accompanied by significant reductions in serum Pcsk9 and total cholesterol levels. We further assess the genome-wide targeting specificity of SaCas9 and SpCas9 using BLESS, and demonstrate that SaCas9-mediated in vivo genome editing has the potential to be efficient and specific.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/bee84253ae47/nihms661947f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/01948cc4a3bc/nihms661947f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/d2b9e645bcfd/nihms661947f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/d26aac13e830/nihms661947f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/115bc7cba794/nihms661947f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/ca1d12c1d326/nihms661947f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/9e05fe7442e1/nihms661947f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/1e6040c85b57/nihms661947f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/6aeebef03162/nihms661947f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/380167527034/nihms661947f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/c53b02de7743/nihms661947f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/83c31ae763ed/nihms661947f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/8397e09c797e/nihms661947f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/13f827ac702d/nihms661947f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/1a17ece650fb/nihms661947f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/bee84253ae47/nihms661947f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/01948cc4a3bc/nihms661947f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/d2b9e645bcfd/nihms661947f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/d26aac13e830/nihms661947f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/115bc7cba794/nihms661947f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/ca1d12c1d326/nihms661947f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/9e05fe7442e1/nihms661947f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/1e6040c85b57/nihms661947f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/6aeebef03162/nihms661947f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/380167527034/nihms661947f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/c53b02de7743/nihms661947f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/83c31ae763ed/nihms661947f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/8397e09c797e/nihms661947f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/13f827ac702d/nihms661947f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/1a17ece650fb/nihms661947f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eb2/4393360/bee84253ae47/nihms661947f5.jpg

相似文献

[1]
In vivo genome editing using Staphylococcus aureus Cas9.

Nature. 2015-4-9

[2]
Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

Nature. 2015-7-23

[3]
Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus.

Antiviral Res. 2018-2-16

[4]
Divergent susceptibilities to AAV-SaCas9-gRNA vector-mediated genome-editing in a single-cell-derived cell population.

BMC Res Notes. 2017-12-8

[5]
Efficient Production of Gene-Modified Mice using Staphylococcus aureus Cas9.

Sci Rep. 2016-9-2

[6]
Expanding CRISPR/Cas9 Genome Editing Capacity in Zebrafish Using SaCas9.

G3 (Bethesda). 2016-8-9

[7]
Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing.

Circ Res. 2014-8-15

[8]
Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci.

Nucleic Acids Res. 2016-5-5

[9]
A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants.

Plant Cell Physiol. 2017-4-1

[10]
Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.

Plant J. 2015-12

引用本文的文献

[1]
Tertiary Lymphoid Organs at the Center Stage of Skin's Humoral Immunity.

Immunol Rev. 2025-9

[2]
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.

Iran J Basic Med Sci. 2025

[3]
All-in-one vectors for epigenetic CRISPR inhibition of in facioscapulohumeral muscular dystrophy.

Mol Ther Methods Clin Dev. 2025-8-7

[4]
CRISPR-mediated optogene expression from a cell-specific endogenous promoter in retinal ON-bipolar cells to restore vision.

Front Drug Deliv. 2023-3-27

[5]
Towards the elimination of infectious HPV: exploiting CRISPR/Cas innovations.

Front Cell Infect Microbiol. 2025-8-4

[6]
GenomePAM directs PAM characterization and engineering of CRISPR-Cas nucleases using mammalian genome repeats.

Nat Biomed Eng. 2025-8-13

[7]
Trends and challenges of AAV-delivered gene editing therapeutics for CNS disorders: Implications for neurodegenerative disease.

Mol Ther Nucleic Acids. 2025-7-17

[8]
Targeted deletions of large syntenic regions in .

Proc Natl Acad Sci U S A. 2025-8-19

[9]
CATS: a bioinformatic tool for automated Cas9 nucleases activity comparison in clinically relevant contexts.

Front Genome Ed. 2025-7-24

[10]
Targeting CyclinD1-CDK6 to Mitigate Senescence-Driven Inflammation and Age-Associated Functional Decline.

bioRxiv. 2025-8-2

本文引用的文献

[1]
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.

Nat Biotechnol. 2015-2

[2]
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.

Nat Biotechnol. 2015-2

[3]
Guide RNA functional modules direct Cas9 activity and orthogonality.

Mol Cell. 2014-10-16

[4]
In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9.

Nat Biotechnol. 2015-1

[5]
CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox.

Biotechnol J. 2014-11

[6]
Development and applications of CRISPR-Cas9 for genome engineering.

Cell. 2014-6-5

[7]
CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences.

Nucleic Acids Res. 2014-6

[8]
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.

Nat Biotechnol. 2014-5-18

[9]
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.

Nat Biotechnol. 2014-4-20

[10]
Classification and evolution of type II CRISPR-Cas systems.

Nucleic Acids Res. 2014-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索