Suppr超能文献

基因组范围内 Cas9 内切酶在哺乳动物细胞中的结合。

Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.

机构信息

1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3].

出版信息

Nat Biotechnol. 2014 Jul;32(7):670-6. doi: 10.1038/nbt.2889. Epub 2014 Apr 20.

Abstract

Bacterial type II CRISPR-Cas9 systems have been widely adapted for RNA-guided genome editing and transcription regulation in eukaryotic cells, yet their in vivo target specificity is poorly understood. Here we mapped genome-wide binding sites of a catalytically inactive Cas9 (dCas9) from Streptococcus pyogenes loaded with single guide RNAs (sgRNAs) in mouse embryonic stem cells (mESCs). Each of the four sgRNAs we tested targets dCas9 to between tens and thousands of genomic sites, frequently characterized by a 5-nucleotide seed region in the sgRNA and an NGG protospacer adjacent motif (PAM). Chromatin inaccessibility decreases dCas9 binding to other sites with matching seed sequences; thus 70% of off-target sites are associated with genes. Targeted sequencing of 295 dCas9 binding sites in mESCs transfected with catalytically active Cas9 identified only one site mutated above background levels. We propose a two-state model for Cas9 binding and cleavage, in which a seed match triggers binding but extensive pairing with target DNA is required for cleavage.

摘要

细菌 II 型 CRISPR-Cas9 系统已被广泛应用于真核细胞中的 RNA 引导的基因组编辑和转录调控,但它们在体内的靶特异性仍知之甚少。在这里,我们在小鼠胚胎干细胞(mESC)中绘制了负载单指导 RNA(sgRNA)的化脓性链球菌无活性 Cas9(dCas9)的全基因组结合位点图谱。我们测试的四个 sgRNA 中的每一个都将 dCas9 靶向到数十到数千个基因组位点,这些位点通常在 sgRNA 中的 5 个核苷酸种子区和 NGG 前导间隔基序(PAM)中具有特征。染色质不可及性降低了与匹配种子序列的其他位点的 dCas9 结合;因此,70%的脱靶位点与基因相关。用活性 Cas9 转染的 mESC 中靶向 295 个 dCas9 结合位点的靶向测序仅鉴定出一个背景水平以上突变的位点。我们提出了 Cas9 结合和切割的两态模型,其中种子匹配触发结合,但需要与靶 DNA 广泛配对才能进行切割。

相似文献

1
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.
Nat Biotechnol. 2014 Jul;32(7):670-6. doi: 10.1038/nbt.2889. Epub 2014 Apr 20.
2
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.
Nat Biotechnol. 2014 Jul;32(7):677-83. doi: 10.1038/nbt.2916. Epub 2014 May 18.
3
Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage.
PLoS One. 2014 Oct 2;9(10):e109213. doi: 10.1371/journal.pone.0109213. eCollection 2014.
4
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.
5
Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
Plant Biotechnol J. 2018 Jan;16(1):292-297. doi: 10.1111/pbi.12771. Epub 2017 Aug 5.
6
CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
Genome Res. 2020 May;30(5):768-775. doi: 10.1101/gr.257493.119. Epub 2020 Apr 23.
7
Protein engineering of Cas9 for enhanced function.
Methods Enzymol. 2014;546:491-511. doi: 10.1016/B978-0-12-801185-0.00024-6.
8
Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference.
J Microbiol Biotechnol. 2020 Dec 28;30(12):1919-1926. doi: 10.4014/jmb.2008.08058.
10
Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome.
BMC Plant Biol. 2016 Apr 21;16:96. doi: 10.1186/s12870-016-0787-3.

引用本文的文献

1
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.
Iran J Basic Med Sci. 2025;28(10):1279-1300. doi: 10.22038/ijbms.2025.87531.18902.
2
Off-target effects in CRISPR-Cas genome editing for human therapeutics: Progress and challenges.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102636. doi: 10.1016/j.omtn.2025.102636. eCollection 2025 Sep 9.
4
Off-target interactions in the CRISPR-Cas9 Machinery: mechanisms and outcomes.
Biochem Biophys Rep. 2025 Jul 5;43:102134. doi: 10.1016/j.bbrep.2025.102134. eCollection 2025 Sep.
5
CRISPR GENome and epigenome engineering improves loss-of-function genetic-screening approaches.
Cell Rep Methods. 2025 Jun 16;5(6):101078. doi: 10.1016/j.crmeth.2025.101078. Epub 2025 Jun 10.
6
Harnessing CRISPR potential for intervertebral disc regeneration strategies.
Front Bioeng Biotechnol. 2025 May 8;13:1562412. doi: 10.3389/fbioe.2025.1562412. eCollection 2025.
7
TOPO-seq reveals DNA topology-induced off-target activity by Cas9 and base editors.
Nat Chem Biol. 2025 Apr 2. doi: 10.1038/s41589-025-01867-7.

本文引用的文献

1
Crystal structure of Cas9 in complex with guide RNA and target DNA.
Cell. 2014 Feb 27;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub 2014 Feb 13.
2
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.
Science. 2014 Mar 14;343(6176):1247997. doi: 10.1126/science.1247997. Epub 2014 Feb 6.
3
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.
4
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system.
Cell. 2013 Dec 19;155(7):1479-91. doi: 10.1016/j.cell.2013.12.001.
5
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.
6
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.
7
Correction of a genetic disease in mouse via use of CRISPR-Cas9.
Cell Stem Cell. 2013 Dec 5;13(6):659-62. doi: 10.1016/j.stem.2013.10.016.
8
Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.
Cell Stem Cell. 2013 Dec 5;13(6):653-8. doi: 10.1016/j.stem.2013.11.002.
9
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.
10
Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18602-7. doi: 10.1073/pnas.1316064110. Epub 2013 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验