Hermkens Dorien M A, van Impel Andreas, Urasaki Akihiro, Bussmann Jeroen, Duckers Henricus J, Schulte-Merker Stefan
Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Erasmus MC Rotterdam, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
Hubrecht Institute - Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
Development. 2015 May 1;142(9):1695-704. doi: 10.1242/dev.117275. Epub 2015 Apr 1.
SoxF family members have been linked to arterio-venous specification events and human pathological conditions, but in contrast to Sox17 and Sox18, a detailed in vivo analysis of a Sox7 mutant model is still lacking. In this study we generated zebrafish sox7 mutants to understand the role of Sox7 during vascular development. By in vivo imaging of transgenic zebrafish lines we show that sox7 mutants display a short circulatory loop around the heart as a result of aberrant connections between the lateral dorsal aorta (LDA) and either the venous primary head sinus (PHS) or the common cardinal vein (CCV). In situ hybridization and live observations in flt4:mCitrine transgenic embryos revealed increased expression levels of flt4 in arterial endothelial cells at the exact location of the aberrant vascular connections in sox7 mutants. An identical circulatory short loop could also be observed in newly generated mutants for hey2 and efnb2. By genetically modulating levels of sox7, hey2 and efnb2 we demonstrate a genetic interaction of sox7 with hey2 and efnb2. The specific spatially confined effect of loss of Sox7 function can be rescued by overexpressing the Notch intracellular domain (NICD) in arterial cells of sox7 mutants, placing Sox7 upstream of Notch in this aspect of arterial development. Hence, sox7 levels are crucial in arterial specification in conjunction with hey2 and efnb2 function, with mutants in all three genes displaying shunt formation and an arterial block.
SoxF家族成员与动静脉特化事件及人类病理状况有关,但与Sox17和Sox18不同的是,目前仍缺乏对Sox7突变体模型的详细体内分析。在本研究中,我们构建了斑马鱼sox7突变体,以了解Sox7在血管发育过程中的作用。通过对转基因斑马鱼品系进行体内成像,我们发现sox7突变体由于背外侧主动脉(LDA)与静脉原头窦(PHS)或总主静脉(CCV)之间的异常连接,导致心脏周围出现短循环环。原位杂交和对flt4:mCitrine转基因胚胎的实时观察显示,在sox7突变体异常血管连接的确切位置,动脉内皮细胞中flt4的表达水平增加。在新生成的hey2和efnb2突变体中也观察到了相同的循环短环。通过基因调节sox7、hey2和efnb2的水平,我们证明了sox7与hey2和efnb2之间存在遗传相互作用。在sox7突变体的动脉细胞中过表达Notch细胞内结构域(NICD)可以挽救Sox7功能丧失的特定空间局限效应,在动脉发育的这一方面将Sox7置于Notch上游。因此,结合hey2和efnb2的功能,sox7水平在动脉特化中至关重要,这三个基因的突变体均表现出分流形成和动脉阻塞。