Suppr超能文献

结构生物学。CRISPR-Cmr复合物的结构揭示了RNA靶标定位模式。

Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning.

作者信息

Taylor David W, Zhu Yifan, Staals Raymond H J, Kornfeld Jack E, Shinkai Akeo, van der Oost John, Nogales Eva, Doudna Jennifer A

机构信息

Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA.

Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6703 HB Wageningen, Netherlands.

出版信息

Science. 2015 May 1;348(6234):581-5. doi: 10.1126/science.aaa4535. Epub 2015 Apr 2.

Abstract

Adaptive immunity in bacteria involves RNA-guided surveillance complexes that use CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) proteins together with CRISPR RNAs (crRNAs) to target invasive nucleic acids for degradation. Whereas type I and type II CRISPR-Cas surveillance complexes target double-stranded DNA, type III complexes target single-stranded RNA. Near-atomic resolution cryo-electron microscopy reconstructions of native type III Cmr (CRISPR RAMP module) complexes in the absence and presence of target RNA reveal a helical protein arrangement that positions the crRNA for substrate binding. Thumblike β hairpins intercalate between segments of duplexed crRNA:target RNA to facilitate cleavage of the target at 6-nucleotide intervals. The Cmr complex is architecturally similar to the type I CRISPR-Cascade complex, suggesting divergent evolution of these immune systems from a common ancestor.

摘要

细菌中的适应性免疫涉及RNA引导的监测复合物,该复合物利用与CRISPR(成簇规律间隔短回文重复序列)相关的(Cas)蛋白以及CRISPR RNA(crRNA)来靶向入侵核酸进行降解。I型和II型CRISPR-Cas监测复合物靶向双链DNA,而III型复合物靶向单链RNA。在不存在和存在靶RNA的情况下,对天然III型Cmr(CRISPR RAMP模块)复合物进行近原子分辨率的冷冻电子显微镜重建,揭示了一种螺旋状蛋白质排列,该排列将crRNA定位用于底物结合。拇指状β发夹插入双链crRNA:靶RNA的片段之间,以促进以6个核苷酸间隔切割靶标。Cmr复合物在结构上与I型CRISPR-Cascade复合物相似,表明这些免疫系统从共同祖先开始发生了趋异进化。

相似文献

1
Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning.
Science. 2015 May 1;348(6234):581-5. doi: 10.1126/science.aaa4535. Epub 2015 Apr 2.
2
RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.
PLoS One. 2017 Jan 23;12(1):e0170552. doi: 10.1371/journal.pone.0170552. eCollection 2017.
3
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
4
RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus.
Mol Cell. 2014 Nov 20;56(4):518-30. doi: 10.1016/j.molcel.2014.10.005. Epub 2014 Nov 6.
5
Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog.
Mol Cell. 2015 May 7;58(3):418-30. doi: 10.1016/j.molcel.2015.03.018. Epub 2015 Apr 23.
6
Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.
Genes Dev. 2014 Nov 1;28(21):2432-43. doi: 10.1101/gad.250712.114.
7
Structures of the Cmr-β Complex Reveal the Regulation of the Immunity Mechanism of Type III-B CRISPR-Cas.
Mol Cell. 2020 Sep 3;79(5):741-757.e7. doi: 10.1016/j.molcel.2020.07.008. Epub 2020 Jul 29.
8
Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity.
Mol Cell. 2019 Jan 17;73(2):264-277.e5. doi: 10.1016/j.molcel.2018.11.007. Epub 2018 Nov 29.
9
10
Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli.
Nature. 2014 Nov 6;515(7525):147-50. doi: 10.1038/nature13733. Epub 2014 Aug 12.

引用本文的文献

1
CRISPR RNA binding drives structural ordering that primes Cas7-11 for target cleavage.
Nucleic Acids Res. 2025 Apr 10;53(7). doi: 10.1093/nar/gkaf271.
2
Nanopores Reveal the Stoichiometry of Single Oligoadenylates Produced by Type III CRISPR-Cas.
ACS Nano. 2024 Jul 2;18(26):16505-16515. doi: 10.1021/acsnano.3c11769. Epub 2024 Jun 14.
3
RNA targeting and cleavage by the type III-Dv CRISPR effector complex.
Nat Commun. 2024 Apr 18;15(1):3324. doi: 10.1038/s41467-024-47506-y.
4
Retention of the RNA ends provides the molecular memory for maintaining the activation of the Csm complex.
Nucleic Acids Res. 2024 Apr 24;52(7):3896-3910. doi: 10.1093/nar/gkae080.
5
An archaeal virus-encoded anti-CRISPR protein inhibits type III-B immunity by inhibiting Cas RNP complex turnover.
Nucleic Acids Res. 2023 Nov 27;51(21):11783-11796. doi: 10.1093/nar/gkad804.
7
Visualizing the Nucleome Using the CRISPR-Cas9 System: From in vitro to in vivo.
Biochemistry (Mosc). 2023 Jan;88(Suppl 1):S123-S149. doi: 10.1134/S0006297923140080.
8
Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector.
Nat Microbiol. 2023 Mar;8(3):522-532. doi: 10.1038/s41564-022-01316-4. Epub 2023 Jan 26.
9
Bacterial origins of cyclic nucleotide-activated antiviral immune signaling.
Mol Cell. 2022 Dec 15;82(24):4591-4610. doi: 10.1016/j.molcel.2022.11.006. Epub 2022 Dec 1.
10
The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.
Biochem Soc Trans. 2022 Oct 31;50(5):1353-1364. doi: 10.1042/BST20220289.

本文引用的文献

1
Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex.
Genes Dev. 2014 Nov 1;28(21):2432-43. doi: 10.1101/gad.250712.114.
2
Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4.
Mol Cell. 2014 Oct 2;56(1):43-54. doi: 10.1016/j.molcel.2014.09.002.
3
Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.
Nature. 2014 Oct 30;514(7524):633-7. doi: 10.1038/nature13637. Epub 2014 Aug 31.
4
Selection of chromosomal DNA libraries using a multiplex CRISPR system.
Elife. 2014 Aug 19;3:e03703. doi: 10.7554/eLife.03703.
5
Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target.
Science. 2014 Sep 19;345(6203):1479-84. doi: 10.1126/science.1256996. Epub 2014 Aug 14.
6
Beam-induced motion correction for sub-megadalton cryo-EM particles.
Elife. 2014 Aug 13;3:e03665. doi: 10.7554/eLife.03665.
7
Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli.
Science. 2014 Sep 19;345(6203):1473-9. doi: 10.1126/science.1256328. Epub 2014 Aug 7.
8
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
Nature. 2014 Sep 25;513(7519):569-73. doi: 10.1038/nature13579. Epub 2014 Jul 27.
9
CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6618-23. doi: 10.1073/pnas.1405079111. Epub 2014 Apr 18.
10
Crystal structure of Cas9 in complex with guide RNA and target DNA.
Cell. 2014 Feb 27;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub 2014 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验