Irmisch Patrick, Mogila Irmantas, Samatanga Brighton, Tamulaitis Gintautas, Seidel Ralf
Peter Debye Institute for Soft Matter Physics, University of Leipzig, Leipzig 04103, Germany.
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania.
Nucleic Acids Res. 2024 Apr 24;52(7):3896-3910. doi: 10.1093/nar/gkae080.
The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus. Although single-stranded RNA is cleaved rapidly (within seconds), dual-color FCS experiments and single-molecule TIRF microscopy revealed that Csm remains bound to terminal RNA cleavage products with a half-life of over 1 hour while releasing the internal RNA fragments quickly. Using a continuous fluorescent DNA degradation assay, we observed that RNA-regulated single-stranded DNase activity decreases on a similar timescale. These findings suggest that after fast target RNA cleavage the terminal RNA cleavage products stay bound within the Csm complex, keeping the Cas10 subunit activated for DNA destruction. Additionally, we demonstrate that during Cas10 activation, the complex remains capable of RNA turnover, i.e. of ongoing degradation of target RNA.
III型CRISPR-Cas效应复合物Csm就像一把分子瑞士军刀,能提供多层次的对外源核酸防御。Csm复合物的三种催化活性协同作用,可同时降解入侵者的RNA转录本、破坏模板DNA并合成信号分子(环状寡腺苷酸cAn),这些信号分子能激活辅助蛋白以增强CRISPR-Cas防御。在此,我们运用单分子技术来关联嗜热链球菌Csm复合物与RNA结合、解离及DNA水解的动力学。尽管单链RNA能快速被切割(数秒内),双色荧光相关光谱实验和单分子全内反射荧光显微镜显示,Csm与末端RNA切割产物的结合半衰期超过1小时,同时能快速释放内部RNA片段。通过连续荧光DNA降解分析,我们观察到RNA调控的单链DNase活性在相似时间尺度上降低。这些发现表明,在快速切割靶RNA后,末端RNA切割产物仍结合在Csm复合物内,使Cas10亚基保持激活状态以进行DNA破坏。此外,我们证明在Cas10激活过程中,复合物仍具备RNA周转能力,即持续降解靶RNA。