MacLaren Ian, Wang LiQiu, McGrouther Damien, Craven Alan J, McVitie Stephen, Schierholz Roland, Kovács András, Barthel Juri, Dunin-Borkowski Rafal E
SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK.
Institute of Energy and Climate Research: Fundamental Electrochemistry (IEK-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
Ultramicroscopy. 2015 Jul;154:57-63. doi: 10.1016/j.ultramic.2015.03.016. Epub 2015 Mar 19.
Differential phase contrast (DPC) imaging in the scanning transmission electron microscope is applied to the study of a charged antiphase domain boundary in doped bismuth ferrite. A clear differential signal is seen, which matches the expected direction of the electric field at the boundary. However, further study by scanned diffraction reveals that there is no measurable deflection of the primary diffraction disc and hence no significant free E-field in the material. Instead, the DPC signal arises from a modulation of the intensity profile within the primary diffraction disc in the vicinity of the boundary. Simulations are used to show that this modulation arises purely from the local change in crystallographic structure at the boundary and not from an electric field. This study highlights the care that is required when interpreting signals recorded from ferroelectric materials using both DPC imaging and other phase contrast techniques.
扫描透射电子显微镜中的微分相衬(DPC)成像被应用于研究掺杂铋铁氧体中的带电反相畴界。观察到一个清晰的微分信号,它与边界处电场的预期方向相符。然而,通过扫描衍射进一步研究发现,初级衍射盘没有可测量的偏转,因此材料中没有显著的自由电场。相反,DPC信号源于边界附近初级衍射盘内强度分布的调制。模拟结果表明,这种调制纯粹是由边界处晶体结构的局部变化引起的,而非电场。这项研究强调了在使用DPC成像和其他相衬技术解释从铁电材料记录的信号时所需的谨慎。