IEEE Trans Med Imaging. 2015 Oct;34(10):2036-45. doi: 10.1109/TMI.2015.2418734. Epub 2015 Apr 1.
Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.
任务态功能磁共振成像(tfMRI)已被广泛用于通过 fMRI 扫描中的预设刺激范式来探索功能脑网络。传统上,广义线性模型(GLM)一直是检测任务诱发网络的主要方法。然而,GLM 专注于任务诱发或事件诱发的大脑反应,可能忽略了内在的大脑功能。相比之下,字典学习和稀疏编码方法最近引起了广泛关注,这些方法已经显示出自动和系统地将 fMRI 信号分解为有意义的任务诱发和内在并发网络的潜力。然而,当前基于数据的字典学习方法有两个明显的局限性,即没有充分利用任务范式的先验知识,以及在不同大脑中建立字典原子之间的对应关系具有挑战性。在本文中,我们提出了一种新的有监督字典学习和稀疏编码方法,用于从 tfMRI 数据中推断功能网络,该方法结合了模型驱动方法和数据驱动方法的优点。基本思想是将任务刺激曲线固定为预设的模型驱动字典原子,而只优化数据驱动字典原子的其他部分。该新方法在公开的人类连接组计划(HCP)tfMRI 数据集上的应用取得了有希望的结果。