Suppr超能文献

结合组稀疏性和不相干性的稀疏表示与字典学习模型,用于提取与精神分裂症相关的异常脑区。

Sparse representation and dictionary learning model incorporating group sparsity and incoherence to extract abnormal brain regions associated with schizophrenia.

作者信息

Peng Peng, Ju Yongfeng, Zhang Yipu, Wang Kaiming, Jiang Suying, Wang Yuping

机构信息

The school of Electronics and Control Engineering, Chang'an University, Xi'an, Shaanxi, 710049, China.

The school of Science, Chang'an University, Xi'an, Shaanxi, 710049, China.

出版信息

IEEE Access. 2020;8:104396-104406. doi: 10.1109/access.2020.2999513. Epub 2020 Jun 3.

Abstract

Schizophrenia is a complex mental illness, the mechanism of which is currently unclear. Using sparse representation and dictionary learning (SDL) model to analyze functional magnetic resonance imaging (fMRI) dataset of schizophrenia is currently a popular method for exploring the mechanism of the disease. The SDL method decomposed the fMRI data into a sparse coding matrix and a dictionary matrix . However, these traditional methods overlooked group structure information in and the coherence between the atoms in . To address this problem, we propose a new SDL model incorporating group sparsity and incoherence, namely GS2ISDL to detect abnormal brain regions. Specifically, GS2ISDL uses the group structure information that defined by AAL anatomical template from fMRI dataset as priori to achieve inter-group sparsity in . At the same time, - is enforced on to achieve intra-group sparsity. In addition, our algorithm also imposes incoherent constraint on the dictionary matrix to reduce the coherence between the atoms in , which can ensure the uniqueness of and the discriminability of the atoms. To validate our proposed model GS2ISDL, we compared it with both IK-SVD and SDL algorithm for analyzing fMRI dataset collected by Mind Clinical Imaging Consortium (MCIC). The results show that the accuracy, sensitivity, recall and MCC values of GS2ISDL are 93.75%, 95.23%, 80.50% and 88.19%, respectively, which outperforms both IK-SVD and SDL. The ROIs extracted by GS2ISDL model (such as Precentral gyrus, Hippocampus and Caudate nucleus, etc.) are further verified by the literature review on schizophrenia studies, which have significant biological significance.

摘要

精神分裂症是一种复杂的精神疾病,其发病机制目前尚不清楚。利用稀疏表示和字典学习(SDL)模型分析精神分裂症的功能磁共振成像(fMRI)数据集是目前探索该疾病发病机制的一种常用方法。SDL方法将fMRI数据分解为一个稀疏编码矩阵和一个字典矩阵。然而,这些传统方法忽略了中的组结构信息以及中的原子之间的相关性。为了解决这个问题,我们提出了一种新的结合组稀疏性和非相关性的SDL模型,即GS2ISDL来检测异常脑区。具体来说,GS2ISDL利用fMRI数据集中由AAL解剖模板定义的组结构信息作为先验知识,以实现中的组间稀疏性。同时,对施加-以实现组内稀疏性。此外,我们的算法还对字典矩阵施加非相关约束,以降低中的原子之间的相关性,这可以确保的唯一性和原子的可区分性。为了验证我们提出的模型GS2ISDL,我们将其与IK-SVD和SDL算法进行了比较,用于分析由Mind临床影像联盟(MCIC)收集的fMRI数据集。结果表明,GS2ISDL的准确率、灵敏度、召回率和MCC值分别为93.75%、95.23%、80.50%和88.19%,优于IK-SVD和SDL。通过对精神分裂症研究的文献综述进一步验证了GS2ISDL模型提取的感兴趣区域(如中央前回、海马体和尾状核等),这些区域具有重要的生物学意义。

相似文献

4
Learning discriminative dictionary for group sparse representation.学习用于群组稀疏表示的判别字典。
IEEE Trans Image Process. 2014 Sep;23(9):3816-28. doi: 10.1109/TIP.2014.2331760. Epub 2014 Jun 18.
8
Sparse representation of group-wise FMRI signals.分组功能磁共振成像信号的稀疏表示
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):608-16. doi: 10.1007/978-3-642-40760-4_76.
10
A semi-blind online dictionary learning approach for fMRI data.一种用于 fMRI 数据的半盲在线字典学习方法。
J Neurosci Methods. 2019 Jul 15;323:1-12. doi: 10.1016/j.jneumeth.2019.03.014. Epub 2019 May 11.

本文引用的文献

2
Frontal lobe alterations in schizophrenia: a review.精神分裂症的额叶改变:综述
Trends Psychiatry Psychother. 2016 Oct-Dec;38(4):198-206. doi: 10.1590/2237-6089-2015-0088.
3
Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.通过秩收缩改善学习词典的非相干性
Neural Comput. 2017 Jan;29(1):263-285. doi: 10.1162/NECO_a_00907. Epub 2016 Oct 20.
8
Supervised dictionary learning for inferring concurrent brain networks.监督字典学习用于推断并发脑网络。
IEEE Trans Med Imaging. 2015 Oct;34(10):2036-45. doi: 10.1109/TMI.2015.2418734. Epub 2015 Apr 1.
10
The role of the thalamus in schizophrenia from a neuroimaging perspective.从神经影像学角度看丘脑在精神分裂症中的作用。
Neurosci Biobehav Rev. 2015 Jul;54:57-75. doi: 10.1016/j.neubiorev.2015.01.013. Epub 2015 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验