Peng Peng, Ju Yongfeng, Zhang Yipu, Wang Kaiming, Jiang Suying, Wang Yuping
The school of Electronics and Control Engineering, Chang'an University, Xi'an, Shaanxi, 710049, China.
The school of Science, Chang'an University, Xi'an, Shaanxi, 710049, China.
IEEE Access. 2020;8:104396-104406. doi: 10.1109/access.2020.2999513. Epub 2020 Jun 3.
Schizophrenia is a complex mental illness, the mechanism of which is currently unclear. Using sparse representation and dictionary learning (SDL) model to analyze functional magnetic resonance imaging (fMRI) dataset of schizophrenia is currently a popular method for exploring the mechanism of the disease. The SDL method decomposed the fMRI data into a sparse coding matrix and a dictionary matrix . However, these traditional methods overlooked group structure information in and the coherence between the atoms in . To address this problem, we propose a new SDL model incorporating group sparsity and incoherence, namely GS2ISDL to detect abnormal brain regions. Specifically, GS2ISDL uses the group structure information that defined by AAL anatomical template from fMRI dataset as priori to achieve inter-group sparsity in . At the same time, - is enforced on to achieve intra-group sparsity. In addition, our algorithm also imposes incoherent constraint on the dictionary matrix to reduce the coherence between the atoms in , which can ensure the uniqueness of and the discriminability of the atoms. To validate our proposed model GS2ISDL, we compared it with both IK-SVD and SDL algorithm for analyzing fMRI dataset collected by Mind Clinical Imaging Consortium (MCIC). The results show that the accuracy, sensitivity, recall and MCC values of GS2ISDL are 93.75%, 95.23%, 80.50% and 88.19%, respectively, which outperforms both IK-SVD and SDL. The ROIs extracted by GS2ISDL model (such as Precentral gyrus, Hippocampus and Caudate nucleus, etc.) are further verified by the literature review on schizophrenia studies, which have significant biological significance.
精神分裂症是一种复杂的精神疾病,其发病机制目前尚不清楚。利用稀疏表示和字典学习(SDL)模型分析精神分裂症的功能磁共振成像(fMRI)数据集是目前探索该疾病发病机制的一种常用方法。SDL方法将fMRI数据分解为一个稀疏编码矩阵和一个字典矩阵。然而,这些传统方法忽略了中的组结构信息以及中的原子之间的相关性。为了解决这个问题,我们提出了一种新的结合组稀疏性和非相关性的SDL模型,即GS2ISDL来检测异常脑区。具体来说,GS2ISDL利用fMRI数据集中由AAL解剖模板定义的组结构信息作为先验知识,以实现中的组间稀疏性。同时,对施加-以实现组内稀疏性。此外,我们的算法还对字典矩阵施加非相关约束,以降低中的原子之间的相关性,这可以确保的唯一性和原子的可区分性。为了验证我们提出的模型GS2ISDL,我们将其与IK-SVD和SDL算法进行了比较,用于分析由Mind临床影像联盟(MCIC)收集的fMRI数据集。结果表明,GS2ISDL的准确率、灵敏度、召回率和MCC值分别为93.75%、95.23%、80.50%和88.19%,优于IK-SVD和SDL。通过对精神分裂症研究的文献综述进一步验证了GS2ISDL模型提取的感兴趣区域(如中央前回、海马体和尾状核等),这些区域具有重要的生物学意义。