Suppr超能文献

通过时变图对连接组规模大脑网络相互作用进行时空建模。

Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.

机构信息

College of Computer and Control Engineering, Nankai University, Tianjin, China.

Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.

出版信息

Neuroimage. 2018 Oct 15;180(Pt B):350-369. doi: 10.1016/j.neuroimage.2017.10.067. Epub 2017 Nov 10.

Abstract

Many recent literature studies have revealed interesting dynamics patterns of functional brain networks derived from fMRI data. However, it has been rarely explored how functional networks spatially overlap (or interact) and how such connectome-scale network interactions temporally evolve. To explore these unanswered questions, this paper presents a novel framework for spatio-temporal modeling of connectome-scale functional brain network interactions via two main effective computational methodologies. First, to integrate, pool and compare brain networks across individuals and their cognitive states under task performances, we designed a novel group-wise dictionary learning scheme to derive connectome-scale consistent brain network templates that can be used to define the common reference space of brain network interactions. Second, the temporal dynamics of spatial network interactions is modeled by a weighted time-evolving graph, and then a data-driven unsupervised learning algorithm based on the dynamic behavioral mixed-membership model (DBMM) is adopted to identify behavioral patterns of brain networks during the temporal evolution process of spatial overlaps/interactions. Experimental results on the Human Connectome Project (HCP) task fMRI data showed that our methods can reveal meaningful, diverse behavior patterns of connectome-scale network interactions. In particular, those networks' behavior patterns are distinct across HCP tasks such as motor, working memory, language and social tasks, and their dynamics well correspond to the temporal changes of specific task designs. In general, our framework offers a new approach to characterizing human brain function by quantitative description for the temporal evolution of spatial overlaps/interactions of connectome-scale brain networks in a standard reference space.

摘要

许多最近的文献研究揭示了从 fMRI 数据中得出的功能脑网络的有趣动态模式。然而,功能网络如何在空间上重叠(或相互作用)以及这种连接组规模的网络相互作用如何随时间演变,这方面的研究还很少。为了探索这些未解决的问题,本文提出了一种通过两种主要的有效计算方法对连接组规模的功能脑网络相互作用进行时空建模的新框架。首先,为了整合、汇集和比较个体在任务表现下的认知状态的大脑网络,我们设计了一种新的组内字典学习方案,以得出连接组规模一致的大脑网络模板,可用于定义大脑网络相互作用的公共参考空间。其次,通过加权时变图对空间网络相互作用的时间动态进行建模,然后采用基于动态行为混合成员模型 (DBMM) 的数据驱动无监督学习算法来识别空间重叠/相互作用的时间演化过程中大脑网络的行为模式。在人类连接组计划(HCP)任务 fMRI 数据上的实验结果表明,我们的方法可以揭示连接组规模网络相互作用的有意义的、多样化的行为模式。特别是,这些网络的行为模式在运动、工作记忆、语言和社会任务等 HCP 任务中是不同的,它们的动力学很好地对应于特定任务设计的时间变化。总的来说,我们的框架提供了一种通过对连接组规模大脑网络在标准参考空间中的空间重叠/相互作用的时间演化进行定量描述来描述人类大脑功能的新方法。

相似文献

引用本文的文献

5
Revealing the Relevant Spatiotemporal Scale Underlying Whole-Brain Dynamics.揭示全脑动力学背后的相关时空尺度。
Front Neurosci. 2021 Oct 22;15:715861. doi: 10.3389/fnins.2021.715861. eCollection 2021.
8
Functional Neuroimaging in the New Era of Big Data.新时代的功能神经影像学:大数据篇
Genomics Proteomics Bioinformatics. 2019 Aug;17(4):393-401. doi: 10.1016/j.gpb.2018.11.005. Epub 2019 Dec 4.
10
New ways of understanding brain neurocircuitry.理解大脑神经回路的新方法。
Dialogues Clin Neurosci. 2018 Jun;20(2):83-84. doi: 10.31887/DCNS.2018.20.2/fthibaut.

本文引用的文献

3
Mapping Multiplex Hubs in Human Functional Brain Networks.绘制人类功能性脑网络中的多重枢纽
Front Neurosci. 2016 Jul 15;10:326. doi: 10.3389/fnins.2016.00326. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验