College of Computer and Control Engineering, Nankai University, Tianjin, China.
Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.
Neuroimage. 2018 Oct 15;180(Pt B):350-369. doi: 10.1016/j.neuroimage.2017.10.067. Epub 2017 Nov 10.
Many recent literature studies have revealed interesting dynamics patterns of functional brain networks derived from fMRI data. However, it has been rarely explored how functional networks spatially overlap (or interact) and how such connectome-scale network interactions temporally evolve. To explore these unanswered questions, this paper presents a novel framework for spatio-temporal modeling of connectome-scale functional brain network interactions via two main effective computational methodologies. First, to integrate, pool and compare brain networks across individuals and their cognitive states under task performances, we designed a novel group-wise dictionary learning scheme to derive connectome-scale consistent brain network templates that can be used to define the common reference space of brain network interactions. Second, the temporal dynamics of spatial network interactions is modeled by a weighted time-evolving graph, and then a data-driven unsupervised learning algorithm based on the dynamic behavioral mixed-membership model (DBMM) is adopted to identify behavioral patterns of brain networks during the temporal evolution process of spatial overlaps/interactions. Experimental results on the Human Connectome Project (HCP) task fMRI data showed that our methods can reveal meaningful, diverse behavior patterns of connectome-scale network interactions. In particular, those networks' behavior patterns are distinct across HCP tasks such as motor, working memory, language and social tasks, and their dynamics well correspond to the temporal changes of specific task designs. In general, our framework offers a new approach to characterizing human brain function by quantitative description for the temporal evolution of spatial overlaps/interactions of connectome-scale brain networks in a standard reference space.
许多最近的文献研究揭示了从 fMRI 数据中得出的功能脑网络的有趣动态模式。然而,功能网络如何在空间上重叠(或相互作用)以及这种连接组规模的网络相互作用如何随时间演变,这方面的研究还很少。为了探索这些未解决的问题,本文提出了一种通过两种主要的有效计算方法对连接组规模的功能脑网络相互作用进行时空建模的新框架。首先,为了整合、汇集和比较个体在任务表现下的认知状态的大脑网络,我们设计了一种新的组内字典学习方案,以得出连接组规模一致的大脑网络模板,可用于定义大脑网络相互作用的公共参考空间。其次,通过加权时变图对空间网络相互作用的时间动态进行建模,然后采用基于动态行为混合成员模型 (DBMM) 的数据驱动无监督学习算法来识别空间重叠/相互作用的时间演化过程中大脑网络的行为模式。在人类连接组计划(HCP)任务 fMRI 数据上的实验结果表明,我们的方法可以揭示连接组规模网络相互作用的有意义的、多样化的行为模式。特别是,这些网络的行为模式在运动、工作记忆、语言和社会任务等 HCP 任务中是不同的,它们的动力学很好地对应于特定任务设计的时间变化。总的来说,我们的框架提供了一种通过对连接组规模大脑网络在标准参考空间中的空间重叠/相互作用的时间演化进行定量描述来描述人类大脑功能的新方法。