Suppr超能文献

使用智能手机进行心律失常鉴别

Arrhythmia discrimination using a smart phone.

作者信息

Chong Jo Woon, Esa Nada, McManus David D, Chon Ki H

出版信息

IEEE J Biomed Health Inform. 2015 May;19(3):815-24. doi: 10.1109/JBHI.2015.2418195. Epub 2015 Mar 31.

Abstract

We hypothesize that our smartphone-based arrhythmia discrimination algorithm with data acquisition approach reliably differentiates between normal sinus rhythm (NSR), atrial fibrillation (AF), premature ventricular contractions (PVCs) and premature atrial contraction (PACs) in a diverse group of patients having these common arrhythmias. We combine root mean square of successive RR differences and Shannon entropy with Poincare plot (or turning point ratio method) and pulse rise and fall times to increase the sensitivity of AF discrimination and add new capabilities of PVC and PAC identification. To investigate the capability of the smartphone-based algorithm for arrhythmia discrimination, 99 subjects, including 88 study participants with AF at baseline and in NSR after electrical cardioversion, as well as seven participants with PACs and four with PVCs were recruited. Using a smartphone, we collected 2-min pulsatile time series from each recruited subject. This clinical application results show that the proposed method detects NSR with specificity of 0.9886, and discriminates PVCs and PACs from AF with sensitivities of 0.9684 and 0.9783, respectively.

摘要

我们假设,我们基于智能手机的心律失常判别算法及其数据采集方法,能够在患有这些常见心律失常的不同患者群体中,可靠地区分正常窦性心律(NSR)、心房颤动(AF)、室性早搏(PVCs)和房性早搏(PACs)。我们将连续RR间期差值的均方根、香农熵与庞加莱图(或转折点比率法)以及脉搏上升和下降时间相结合,以提高房颤判别的敏感性,并增加识别室性早搏和房性早搏的新能力。为了研究基于智能手机的算法对心律失常的判别能力,我们招募了99名受试者,其中包括88名基线时患有房颤且在电复律后转为正常窦性心律的研究参与者,以及7名患有房性早搏和4名患有室性早搏的参与者。我们使用智能手机从每个招募的受试者收集了2分钟的搏动时间序列。该临床应用结果表明,所提出的方法检测正常窦性心律的特异性为0.9886,区分室性早搏和房性早搏与房颤的敏感性分别为0.9684和0.9783。

相似文献

1
Arrhythmia discrimination using a smart phone.使用智能手机进行心律失常鉴别
IEEE J Biomed Health Inform. 2015 May;19(3):815-24. doi: 10.1109/JBHI.2015.2418195. Epub 2015 Mar 31.
3
Motion and Noise Artifact-Resilient Atrial Fibrillation Detection using a Smartphone.使用智能手机进行抗运动和噪声伪影的心房颤动检测
IEEE J Emerg Sel Top Circuits Syst. 2018 Jun;8(2):230-239. doi: 10.1109/JETCAS.2018.2818185. Epub 2018 Mar 22.
8
Atrial fibrillation detection using a smart phone.使用智能手机进行房颤检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1177-80. doi: 10.1109/EMBC.2012.6346146.
9
Smart detection of atrial fibrillation†.心房颤动的智能检测†
Europace. 2017 May 1;19(5):753-757. doi: 10.1093/europace/euw125.
10
Atrial fibrillation detection using an iPhone 4S.使用 iPhone 4S 检测心房颤动。
IEEE Trans Biomed Eng. 2013 Jan;60(1):203-6. doi: 10.1109/TBME.2012.2208112. Epub 2012 Jul 31.

引用本文的文献

8
Feasibility of atrial fibrillation detection from a novel wearable armband device.通过新型可穿戴式臂带设备检测心房颤动的可行性。
Cardiovasc Digit Health J. 2021 May 21;2(3):179-191. doi: 10.1016/j.cvdhj.2021.05.004. eCollection 2021 Jun.

本文引用的文献

2
Time-varying coherence function for atrial fibrillation detection.时变相干函数在心房颤动检测中的应用。
IEEE Trans Biomed Eng. 2013 Oct;60(10):2783-93. doi: 10.1109/TBME.2013.2264721. Epub 2013 May 22.
4
Atrial fibrillation detection using an iPhone 4S.使用 iPhone 4S 检测心房颤动。
IEEE Trans Biomed Eng. 2013 Jan;60(1):203-6. doi: 10.1109/TBME.2012.2208112. Epub 2012 Jul 31.
7
Physiological parameter monitoring from optical recordings with a mobile phone.利用移动电话进行光学记录的生理参数监测。
IEEE Trans Biomed Eng. 2012 Feb;59(2):303-6. doi: 10.1109/TBME.2011.2163157. Epub 2011 Jul 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验