Suppr超能文献

基于长时光电容积脉搏波数据的 CEPNCC-BiLSTM 心房颤动智能检测方法。

Intelligent Detection Method of Atrial Fibrillation by CEPNCC-BiLSTM Based on Long-Term Photoplethysmography Data.

机构信息

School of Mechatronics Engineering and Automation, Foshan University, Foshan 528000, China.

Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, China.

出版信息

Sensors (Basel). 2024 Aug 14;24(16):5243. doi: 10.3390/s24165243.

Abstract

Atrial fibrillation (AF) is the most prevalent arrhythmia characterized by intermittent and asymptomatic episodes. However, traditional detection methods often fail to capture the sporadic and intricate nature of AF, resulting in an increased risk of false-positive diagnoses. To address these challenges, this study proposes an intelligent AF detection and diagnosis method that integrates Complementary Ensemble Empirical Mode Decomposition, Power-Normalized Cepstral Coefficients, Bi-directional Long Short-term Memory (CEPNCC-BiLSTM), and photoelectric volumetric pulse wave technology to enhance accuracy in detecting AF. Compared to other approaches, the proposed method demonstrates faster preprocessing efficiency and higher sensitivity in detecting AF while effectively filtering out false alarms from photoplethysmography (PPG) recordings of non-AF patients. Considering the limitations of conventional AF detection evaluation systems that lack a comprehensive assessment of efficiency and accuracy, this study proposes the evaluation system based on F-measurement, which incorporates both computational speed and accuracy to provide a holistic assessment of overall performance. Evaluated with the , the CEPNCC-BiLSTM method outperforms EEMD-based improved Power-Normalized Cepstral Coefficients and Bi-directional Long Short-term Memory (EPNCC-BiLSTM), Support Vector Machine (SVM), EPNCC-SVM, and CEPNCC-SVM methods. Notably, this approach achieves an outstanding accuracy rate of up to 99.2% while processing PPG recordings within 5 s, highlighting its potential for long-term AF monitoring.

摘要

心房颤动(AF)是最常见的心律失常,其特征为间歇性和无症状发作。然而,传统的检测方法往往无法捕捉 AF 的偶发性和复杂性,导致假阳性诊断的风险增加。为了解决这些挑战,本研究提出了一种智能 AF 检测和诊断方法,该方法结合互补集合经验模态分解、功率归一化倒谱系数、双向长短期记忆(CEPNCC-BiLSTM)和光电容积脉搏波技术,以提高检测 AF 的准确性。与其他方法相比,所提出的方法在检测 AF 时具有更快的预处理效率和更高的灵敏度,同时有效滤除非 AF 患者的光电容积脉搏波(PPG)记录中的假警报。考虑到传统 AF 检测评估系统缺乏对效率和准确性的全面评估的局限性,本研究提出了基于 F 度量的评估系统,该系统结合了计算速度和准确性,以全面评估整体性能。使用该评估系统,CEPNCC-BiLSTM 方法优于基于 EEMD 的改进功率归一化倒谱系数和双向长短期记忆(EPNCC-BiLSTM)、支持向量机(SVM)、EPNCC-SVM 和 CEPNCC-SVM 方法。值得注意的是,该方法在处理 PPG 记录时,速度可在 5 秒内达到高达 99.2%的准确率,突出了其在长期 AF 监测中的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca6/11359430/ed349cc0f977/sensors-24-05243-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验