Briggs Beverly D, Li Yue, Swihart Mark T, Knecht Marc R
†Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States.
‡Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States.
ACS Appl Mater Interfaces. 2015 Apr 29;7(16):8843-51. doi: 10.1021/acsami.5b01461. Epub 2015 Apr 14.
The use of peptides as capping ligands for materials synthesis has been widely explored. The ambient conditions of bio-inspired syntheses using molecules such as peptides represent an attractive route for controlling the morphology and activity of nanomaterials. Although various reductants can be used in such syntheses, no comprehensive comparison of the same bio-based ligand with different reductants has been reported. In this contribution, peptides AuBP1, AuBP2, and Pd4 are used in the synthesis of Au nanoparticles. The reductant strength is varied by using three different reducing agents: NaBH4, hydrazine, and ascorbic acid. These changes in reductant produce significant morphological differences in the final particles. The weakest reductant, ascorbic acid, yields large, globular nanoparticles with rough surfaces, whereas the strongest reductant, NaBH4, yields small, spherical, smooth nanomaterials. Studies of 4-nitrophenol reduction using the Au nanoparticles as catalysts reveal a decrease in activation energy for the large, globular, rough materials relative to the small, spherical, smooth materials. These studies demonstrate that modifying the reductant is a simple way to control the activity of peptide-capped nanoparticles.
肽作为材料合成的封端配体已得到广泛研究。使用肽等分子进行仿生合成的环境条件是控制纳米材料形态和活性的一条有吸引力的途径。尽管在这类合成中可以使用各种还原剂,但尚未有关于同一生物基配体与不同还原剂的全面比较报道。在本研究中,肽AuBP1、AuBP2和Pd4用于金纳米颗粒的合成。通过使用三种不同的还原剂(硼氢化钠、肼和抗坏血酸)来改变还原剂强度。还原剂的这些变化在最终颗粒中产生了显著的形态差异。最弱的还原剂抗坏血酸产生大的、表面粗糙的球形纳米颗粒,而最强的还原剂硼氢化钠产生小的、球形的、光滑的纳米材料。以金纳米颗粒为催化剂对4-硝基苯酚还原的研究表明,相对于小的、球形的、光滑的材料,大的、球形的、粗糙的材料的活化能降低。这些研究表明,改变还原剂是控制肽封端纳米颗粒活性的一种简单方法。