Suppr超能文献

半胱氨酸蛋白质组

The cysteine proteome.

作者信息

Go Young-Mi, Chandler Joshua D, Jones Dean P

机构信息

Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.

Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA 30322, USA.

出版信息

Free Radic Biol Med. 2015 Jul;84:227-245. doi: 10.1016/j.freeradbiomed.2015.03.022. Epub 2015 Apr 3.

Abstract

The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metalation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to allow the discrimination of network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome.

摘要

半胱氨酸(Cys)蛋白质组是基因组与暴露组之间适应性界面的主要组成部分。Cys的硫醇部分会经历一系列生物修饰,从而实现结构和反应性的生物转换。这些生物修饰包括亚磺酰化和二硫键形成、更高氧化态的形成、S-亚硝基化、过硫化、金属化以及其他修饰。目前,关于这些系统及其区室化的广泛知识为开发Cys蛋白质组调控的先进整合模型奠定了基础。特别是,对氧化还原信号通路和传感网络的详细了解使得区分网络结构成为可能。这项研究将重点放在了开发Cys修饰图谱以建立系统生物学模型的必要性上。这样的图谱对于将Cys蛋白质组与成像及其他组学平台联系起来的整合研究将特别有用,为改进基于氧化还原的治疗方法提供基础。因此,一个将Cys蛋白质组作为连接基因组与暴露组的组学连续体中定量蛋白质组补充的框架正在形成。

相似文献

1
The cysteine proteome.
Free Radic Biol Med. 2015 Jul;84:227-245. doi: 10.1016/j.freeradbiomed.2015.03.022. Epub 2015 Apr 3.
2
Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems.
Mol Cell Proteomics. 2013 Nov;12(11):3285-96. doi: 10.1074/mcp.M113.030437. Epub 2013 Aug 14.
3
Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
Free Radic Biol Med. 2013 Oct;63:325-37. doi: 10.1016/j.freeradbiomed.2013.05.040. Epub 2013 Jun 2.
4
The Expanding Landscape of the Thiol Redox Proteome.
Mol Cell Proteomics. 2016 Jan;15(1):1-11. doi: 10.1074/mcp.O115.056051. Epub 2015 Oct 30.
5
The redox proteome.
J Biol Chem. 2013 Sep 13;288(37):26512-20. doi: 10.1074/jbc.R113.464131. Epub 2013 Jul 16.
6
Redox biology of the intestine.
Free Radic Res. 2011 Nov;45(11-12):1245-66. doi: 10.3109/10715762.2011.611509. Epub 2011 Sep 5.
7
Protein Cysteinyl-S-Nitrosylation: Analysis and Quantification.
Methods Enzymol. 2017;586:1-14. doi: 10.1016/bs.mie.2016.10.016. Epub 2017 Jan 5.
8
10
Thiol/disulfide redox states in signaling and sensing.
Crit Rev Biochem Mol Biol. 2013 Mar-Apr;48(2):173-81. doi: 10.3109/10409238.2013.764840. Epub 2013 Jan 29.

引用本文的文献

2
ROMO1 overexpression protects the mitochondrial cysteinome from oxidations in aging.
Nat Commun. 2025 Jun 3;16(1):5133. doi: 10.1038/s41467-025-60503-z.
3
Cysteine-rich zinc finger proteins and the nuclear factor kappa-B pathway.
Front Chem Biol. 2024;3. doi: 10.3389/fchbi.2024.1503390. Epub 2024 Dec 19.
4
Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome.
Chem Rev. 2025 Apr 23;125(8):4069-4110. doi: 10.1021/acs.chemrev.4c00554. Epub 2025 Apr 3.
6
Global research trends on the human exposome: a bibliometric analysis (2005-2024).
Environ Sci Pollut Res Int. 2025 Mar;32(13):7808-7833. doi: 10.1007/s11356-025-36197-7. Epub 2025 Mar 8.
7
Flavins and Flavoproteins in the Neuroimmune Landscape of Stress Sensitization and Major Depressive Disorder.
J Inflamm Res. 2025 Jan 16;18:681-699. doi: 10.2147/JIR.S501652. eCollection 2025.
8
Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs.
J Agric Food Chem. 2024 Nov 13;72(45):24908-24927. doi: 10.1021/acs.jafc.4c07756. Epub 2024 Oct 31.
10
Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities.
Protein J. 2024 Aug;43(4):639-655. doi: 10.1007/s10930-024-10223-y. Epub 2024 Jul 28.

本文引用的文献

1
Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health.
Free Radic Res. 2015 Jun;49(6):695-710. doi: 10.3109/10715762.2014.1003372. Epub 2015 Jan 28.
2
Antiinflammatory and Antimicrobial Effects of Thiocyanate in a Cystic Fibrosis Mouse Model.
Am J Respir Cell Mol Biol. 2015 Aug;53(2):193-205. doi: 10.1165/rcmb.2014-0208OC.
3
S-glutathionylation reactions in mitochondrial function and disease.
Front Cell Dev Biol. 2014 Nov 17;2:68. doi: 10.3389/fcell.2014.00068. eCollection 2014.
5
Hydrogen sulfide and polysulfides as biological mediators.
Molecules. 2014 Oct 9;19(10):16146-57. doi: 10.3390/molecules191016146.
6
Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility.
Free Radic Biol Med. 2014 Dec;77:82-94. doi: 10.1016/j.freeradbiomed.2014.09.007. Epub 2014 Sep 16.
7
Protein disulfide isomerase a multifunctional protein with multiple physiological roles.
Front Chem. 2014 Aug 26;2:70. doi: 10.3389/fchem.2014.00070. eCollection 2014.
9
Site-specific mapping and quantification of protein S-sulphenylation in cells.
Nat Commun. 2014 Sep 1;5:4776. doi: 10.1038/ncomms5776.
10
Lysosome-related organelles as mediators of metal homeostasis.
J Biol Chem. 2014 Oct 10;289(41):28129-36. doi: 10.1074/jbc.R114.592618. Epub 2014 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验