Choudhury Sharmistha Dutta, Badugu Ramachandram, Ray Krishanu, Lakowicz Joseph R
Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 725 West Lombard Street, Baltimore, Maryland 21201, United States.
J Phys Chem C Nanomater Interfaces. 2015 Feb 12;119(6):3302-3311. doi: 10.1021/jp512174w.
Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage.
金属-电介质-金属(MDM)结构可实现接近表面法线方向的定向发射,这为基于荧光的应用带来了新的设计形式。这种定向发射是由于荧光团与MDM衬底中存在的光学模式的近场耦合而产生的。反射率模拟和色散图为模式分布以及影响耦合效率和耦合发射空间分布的因素提供了基本理解。这项工作表明,金属层的组成、染料在MDM衬底中的位置以及电介质厚度是重要参数,可通过选择这些参数来调整发射波长的颜色、观察角度、发射的角发散以及发射光的偏振。这些特性对于显示器和光学标识很有价值。