Turner Brandon M, van Maanen Leendert, Forstmann Birte U
Psychology Department, The Ohio State University.
Psychology Department, University of Amsterdam.
Psychol Rev. 2015 Apr;122(2):312-336. doi: 10.1037/a0038894.
Trial-to-trial fluctuations in an observer's state of mind have a direct influence on their behavior. However, characterizing an observer's state of mind is difficult to do with behavioral data alone, particularly on a single-trial basis. In this article, we extend a recently developed hierarchical Bayesian framework for integrating neurophysiological information into cognitive models. In so doing, we develop a novel extension of the well-studied drift diffusion model (DDM) that uses single-trial brain activity patterns to inform the behavioral model parameters. We first show through simulation how the model outperforms the traditional DDM in a prediction task with sparse data. We then fit the model to experimental data consisting of a speed-accuracy manipulation on a random dot motion task. We use our cognitive modeling approach to show how prestimulus brain activity can be used to simultaneously predict response accuracy and response time. We use our model to provide an explanation for how activity in a brain region affects the dynamics of the underlying decision process through mechanisms assumed by the model. Finally, we show that our model performs better than the traditional DDM through a cross-validation test. By combining accuracy, response time, and the blood oxygen level-dependent response into a unified model, the link between cognitive abstraction and neuroimaging can be better understood.
观察者心理状态的逐次波动会直接影响其行为。然而,仅靠行为数据很难刻画观察者的心理状态,尤其是在单次试验的基础上。在本文中,我们扩展了一个最近开发的层次贝叶斯框架,用于将神经生理信息整合到认知模型中。在此过程中,我们开发了一种对经过充分研究的漂移扩散模型(DDM)的新颖扩展,该扩展使用单次试验的脑活动模式来为行为模型参数提供信息。我们首先通过模拟展示了该模型在稀疏数据预测任务中如何优于传统的DDM。然后,我们将该模型拟合到由随机点运动任务中的速度 - 准确性操作组成的实验数据上。我们使用我们的认知建模方法来展示刺激前的脑活动如何能够同时预测反应准确性和反应时间。我们使用我们的模型来解释脑区活动如何通过模型假设的机制影响潜在决策过程的动态。最后,我们通过交叉验证测试表明我们的模型比传统的DDM表现更好。通过将准确性、反应时间和血氧水平依赖反应整合到一个统一模型中,可以更好地理解认知抽象与神经成像之间的联系。