Suppr超能文献

高斯过程关联函数在心智、大脑和行为中的应用。

Gaussian process linking functions for mind, brain, and behavior.

机构信息

Department of Psychology, The Ohio State University, Columbus, OH 43210.

Department of Psychology, The Ohio State University, Columbus, OH 43210

出版信息

Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29398-29406. doi: 10.1073/pnas.1912342117.

Abstract

The link between mind, brain, and behavior has mystified philosophers and scientists for millennia. Recent progress has been made by forming statistical associations between manifest variables of the brain (e.g., electroencephalogram [EEG], functional MRI [fMRI]) and manifest variables of behavior (e.g., response times, accuracy) through hierarchical latent variable models. Within this framework, one can make inferences about the mind in a statistically principled way, such that complex patterns of brain-behavior associations drive the inference procedure. However, previous approaches were limited in the flexibility of the linking function, which has proved prohibitive for understanding the complex dynamics exhibited by the brain. In this article, we propose a data-driven, nonparametric approach that allows complex linking functions to emerge from fitting a hierarchical latent representation of the mind to multivariate, multimodal data. Furthermore, to enforce biological plausibility, we impose both spatial and temporal structure so that the types of realizable system dynamics are constrained. To illustrate the benefits of our approach, we investigate the model's performance in a simulation study and apply it to experimental data. In the simulation study, we verify that the model can be accurately fitted to simulated data, and latent dynamics can be well recovered. In an experimental application, we simultaneously fit the model to fMRI and behavioral data from a continuous motion tracking task. We show that the model accurately recovers both neural and behavioral data and reveals interesting latent cognitive dynamics, the topology of which can be contrasted with several aspects of the experiment.

摘要

心、脑和行为之间的联系让哲学家和科学家困惑了几千年。通过分层潜在变量模型,在大脑的显式变量(例如脑电图[EEG]、功能磁共振成像[fMRI])和行为的显式变量(例如反应时间、准确性)之间形成统计关联,最近取得了进展。在这个框架内,可以以统计上有原则的方式对心理进行推断,使得大脑-行为关联的复杂模式驱动推断过程。然而,以前的方法在连接函数的灵活性方面受到限制,这对于理解大脑表现出的复杂动态来说是一个障碍。在本文中,我们提出了一种数据驱动的、非参数的方法,允许从对心的分层潜在表示拟合中出现复杂的连接函数,以适应多元、多模态数据。此外,为了强制执行生物学上的合理性,我们施加了空间和时间结构,以便约束可实现的系统动态类型。为了说明我们方法的优势,我们在模拟研究中调查了模型的性能,并将其应用于实验数据。在模拟研究中,我们验证了模型可以准确地拟合模拟数据,并且可以很好地恢复潜在动态。在一个实验应用中,我们同时将模型拟合到连续运动跟踪任务的 fMRI 和行为数据中。我们表明,该模型可以准确地恢复神经和行为数据,并揭示出有趣的潜在认知动态,其拓扑结构可以与实验的几个方面进行对比。

相似文献

1
Gaussian process linking functions for mind, brain, and behavior.高斯过程关联函数在心智、大脑和行为中的应用。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29398-29406. doi: 10.1073/pnas.1912342117.
2
Data-Driven Extraction of a Nested Model of Human Brain Function.基于数据驱动的人类脑功能嵌套模型提取
J Neurosci. 2017 Jul 26;37(30):7263-7277. doi: 10.1523/JNEUROSCI.0323-17.2017. Epub 2017 Jun 20.
4
Toward a model-based cognitive neuroscience of mind wandering.迈向基于模型的思维游荡认知神经科学。
Neuroscience. 2015 Dec 3;310:290-305. doi: 10.1016/j.neuroscience.2015.09.053. Epub 2015 Sep 28.

引用本文的文献

3
Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer.利用多模态图变换器揭示大脑的连续动态组织
Med Image Comput Comput Assist Interv. 2022 Sep;13431:346-355. doi: 10.1007/978-3-031-16431-6_33. Epub 2022 Sep 15.
5
The challenges and prospects of brain-based prediction of behaviour.基于大脑的行为预测的挑战与展望。
Nat Hum Behav. 2023 Aug;7(8):1255-1264. doi: 10.1038/s41562-023-01670-1. Epub 2023 Jul 31.
10
The brain produces mind by modeling.大脑通过建模产生思维。
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29299-29301. doi: 10.1073/pnas.1912340117.

本文引用的文献

2
Approaches to Analysis in Model-based Cognitive Neuroscience.基于模型的认知神经科学中的分析方法。
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
3
Variational Bayesian methods for cognitive science.认知科学中的变分贝叶斯方法。
Psychol Methods. 2020 Oct;25(5):535-559. doi: 10.1037/met0000242. Epub 2019 Oct 10.
4
Harmonized Multimodal Learning with Gaussian Process Latent Variable Models.基于高斯过程潜变量模型的协调多模态学习。
IEEE Trans Pattern Anal Mach Intell. 2021 Mar;43(3):858-872. doi: 10.1109/TPAMI.2019.2942028. Epub 2021 Feb 4.
6
Advances in techniques for imposing reciprocity in brain-behavior relations.在建立大脑-行为关系的互惠性方面的技术进展。
Neurosci Biobehav Rev. 2019 Jul;102:327-336. doi: 10.1016/j.neubiorev.2019.04.018. Epub 2019 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验