Stanford University, USA.
Neuroimage. 2013 May 15;72:193-206. doi: 10.1016/j.neuroimage.2013.01.048. Epub 2013 Jan 28.
Scientists who study cognition infer underlying processes either by observing behavior (e.g., response times, percentage correct) or by observing neural activity (e.g., the BOLD response). These two types of observations have traditionally supported two separate lines of study. The first is led by cognitive modelers, who rely on behavior alone to support their computational theories. The second is led by cognitive neuroimagers, who rely on statistical models to link patterns of neural activity to experimental manipulations, often without any attempt to make a direct connection to an explicit computational theory. Here we present a flexible Bayesian framework for combining neural and cognitive models. Joining neuroimaging and computational modeling in a single hierarchical framework allows the neural data to influence the parameters of the cognitive model and allows behavioral data, even in the absence of neural data, to constrain the neural model. Critically, our Bayesian approach can reveal interactions between behavioral and neural parameters, and hence between neural activity and cognitive mechanisms. We demonstrate the utility of our approach with applications to simulated fMRI data with a recognition model and to diffusion-weighted imaging data with a response time model of perceptual choice.
研究认知的科学家通过观察行为(例如,反应时间、正确率)或观察神经活动(例如,BOLD 反应)来推断潜在过程。这两种观察方法传统上支持两种独立的研究思路。第一种思路由认知建模师主导,他们仅依靠行为来支持他们的计算理论。第二种思路由认知神经成像师主导,他们依靠统计模型将神经活动模式与实验操作联系起来,通常不试图与明确的计算理论建立直接联系。在这里,我们提出了一个灵活的贝叶斯框架,用于结合神经和认知模型。将神经影像学和计算建模结合在一个单一的层次结构框架中,可以使神经数据影响认知模型的参数,并使行为数据(即使在没有神经数据的情况下)也可以限制神经模型。至关重要的是,我们的贝叶斯方法可以揭示行为和神经参数之间的相互作用,以及神经活动和认知机制之间的相互作用。我们通过将识别模型应用于模拟 fMRI 数据和将知觉选择的反应时模型应用于扩散加权成像数据来证明我们方法的实用性。