Suppr超能文献

RBRIdent:一种用于从一级序列中改进蛋白质RNA结合残基识别的算法。

RBRIdent: An algorithm for improved identification of RNA-binding residues in proteins from primary sequences.

作者信息

Xiong Dapeng, Zeng Jianyang, Gong Haipeng

机构信息

MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, 100084, China.

出版信息

Proteins. 2015 Jun;83(6):1068-77. doi: 10.1002/prot.24806. Epub 2015 Apr 22.

Abstract

Rapid and correct identification of RNA-binding residues based on the protein primary sequences is of great importance. In most prevalent machine-learning-based identification methods; however, either some features are inefficiently represented, or the redundancy between features is not effectively removed. Both problems may weaken the performance of a classifier system and raise its computational complexity. Here, we addressed the above problems and developed a better classifier (RBRIdent) to identify the RNA-binding residues. In an independent benchmark test, RBRIdent achieved an accuracy of 76.79%, Matthews correlation coefficient of 0.3819 and F-measure of 75.58%, remarkably outperforming all prevalent methods. These results suggest the necessity of proper feature description and the essential role of feature selection in this project. All source data and codes are freely available at http://166.111.152.91/RBRIdent.

摘要

基于蛋白质一级序列快速准确地识别RNA结合残基非常重要。然而,在大多数基于机器学习的识别方法中,要么某些特征表示效率低下,要么特征之间的冗余没有被有效去除。这两个问题都可能削弱分类器系统的性能并提高其计算复杂度。在此,我们解决了上述问题,并开发了一种更好的分类器(RBRIdent)来识别RNA结合残基。在一项独立的基准测试中,RBRIdent的准确率达到76.79%,马修斯相关系数为0.3819,F值为75.58%,显著优于所有流行方法。这些结果表明了在该项目中进行适当特征描述的必要性以及特征选择的重要作用。所有源数据和代码可在http://166.111.152.91/RBRIdent免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验