Zhou Aifen, Hillesland Kristina L, He Zhili, Schackwitz Wendy, Tu Qichao, Zane Grant M, Ma Qiao, Qu Yuanyuan, Stahl David A, Wall Judy D, Hazen Terry C, Fields Matthew W, Arkin Adam P, Zhou Jizhong
Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
Biological Sciences, University of Washington Bothell, Bothell, WA, USA.
ISME J. 2015 Nov;9(11):2360-72. doi: 10.1038/ismej.2015.45. Epub 2015 Apr 7.
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.
为了研究微生物对盐(NaCl)胁迫进化适应的遗传基础,我们对希登伯勒脱硫弧菌(DvH)进行了研究。DvH是一种对硫、碳和氮的生物地球化学循环至关重要的硫酸盐还原菌,在有毒重金属和放射性核素的生物修复中也具有潜在作用。我们将其群体分别在盐胁迫或非胁迫条件下传代培养1200代。全基因组测序显示,在盐胁迫进化的克隆ES9-11中发现了11个突变,在非胁迫进化的克隆EC3-10中发现了14个突变。全群体测序数据表明,在盐胁迫下,前100代内预先存在的多态性迅速发生选择性清除,新突变则缓慢固定。群体基因分型数据表明,预先存在的多态性的快速选择性清除在盐胁迫进化群体中很常见。相比之下,在EC群体中,预先存在的多态性的选择在很大程度上是随机的。一致的是,在传代100代时,胁迫进化群体ES9表现出提高的耐盐性,即在较高盐度条件下生长速率提高(2.0倍)、生物量产量增加(1.8倍)和滞后期缩短(0.7倍)。通过定点诱变证实了几个突变的有益性质。所有四个测试突变都导致了在较高盐度条件下滞后期的缩短。特别是,与ES9-11中耐盐性的提高相比,组氨酸激酶蛋白基因lytS中的一个突变对生长速率增加的贡献为27%,对生物量产量增加的贡献为23%,而假定基因DVU2472中的一个突变对生物量产量增加的贡献为24%。我们的结果表明,少数有益突变可导致耐盐性的显著提高。