Suppr超能文献

硫酸盐还原菌耐盐性的关键代谢物和机制变化的实验研究。

Key Metabolites and Mechanistic Changes for Salt Tolerance in an Experimentally Evolved Sulfate-Reducing Bacterium, .

机构信息

Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA.

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.

出版信息

mBio. 2017 Nov 14;8(6):e01780-17. doi: 10.1128/mBio.01780-17.

Abstract

Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies. Hildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation of Hildenborough with experimental evolution. Here, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution.

摘要

硫酸盐还原菌 Hildenborough 的快速遗传和表型适应在实验进化过程中被观察到。为了鉴定对盐度耐受至关重要的关键代谢物,分析了一个从种群 ES10 中分离出来的克隆 ES10-5,该克隆在盐胁迫下经历了 5000 代的实验进化,并与从种群 ES9 中分离出来的克隆 ES9-11 进行了比较,该克隆在相同条件下经历了 1200 代的进化。选择这两个克隆是因为它们是六个独立进化群体中适应能力最强的克隆。除了预先存在的突变和 ES9-11 中相同基因的不同突变外,ES10-5 在可能参与盐度耐受的基因中获得了新的突变。与 ES9-11 相比,ES10-5 中大多数代谢物和磷脂脂肪酸 (PLFA) 的基础丰度变化较低,但在高盐条件下谷氨酸和支链 PLFA i17:1ω9c 的增加是持续的。与祖先相比,ES9-11 的细胞迁移能力降低;相反,ES10-5 在非胁迫和高盐条件下均表现出更高的细胞迁移能力。在非胁迫或高盐条件下,两种基因型的生长能量效率都优于祖先。一致地,ES10-5 没有显示出在 ES9-11 中观察到的大多数基础转录变化,但它显示出在高盐下参与谷氨酸生物合成、阳离子外排和能量代谢的基因表达增加。这些结果表明谷氨酸作为一种关键的渗透物和 i17:1ω9c 作为主要的 PLFA 在 Hildenborough 中的盐度耐受中的作用。进化基因型的机制变化表明,生长能量效率可能是选择的关键因素。高盐(例如,升高的 NaCl)是一种影响许多生物体的胁迫物。盐度耐受是一种涉及多种细胞途径的复杂特征,是实验进化研究的理想选择。 Hildenborough 是一种重要的硫酸盐还原菌(SRB),它在硫、碳和氮的生物地球化学循环中很重要,可能对生物腐蚀以及有毒重金属和放射性核素的生物修复有影响。SRB 和高盐度在自然栖息地和重金属污染现场的共存为 Hildenborough 的盐度适应实验进化研究奠定了基础。在这里,我们分析了一个在盐胁迫下进化了 5000 代的克隆,并将其与在相同条件下进化了 1200 代的克隆进行了比较。结果表明,谷氨酸在渗透压保护中起关键作用,i17:1ω9c 在盐度适应过程中增加膜流动性。这些发现为长期实验进化过程中盐度适应机制变化提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfec/5686539/8f6383cc56a3/mbo0061735790001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验