Suppr超能文献

光遗传学方法在研究快速尺度尖峰编码中的优势与局限。

Advantages and limitations of the use of optogenetic approach in studying fast-scale spike encoding.

作者信息

Malyshev Aleksey, Goz Roman, LoTurco Joseph J, Volgushev Maxim

机构信息

Department of Psychology, University of Connecticut, Storrs, Connecticut, United States of America; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.

Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America.

出版信息

PLoS One. 2015 Apr 7;10(4):e0122286. doi: 10.1371/journal.pone.0122286. eCollection 2015.

Abstract

Understanding single-neuron computations and encoding performed by spike-generation mechanisms of cortical neurons is one of the central challenges for cell electrophysiology and computational neuroscience. An established paradigm to study spike encoding in controlled conditions in vitro uses intracellular injection of a mixture of signals with fluctuating currents that mimic in vivo-like background activity. However this technique has two serious limitations: it uses current injection, while synaptic activation leads to changes of conductance, and current injection is technically most feasible in the soma, while the vast majority of synaptic inputs are located on the dendrites. Recent progress in optogenetics provides an opportunity to circumvent these limitations. Transgenic expression of light-activated ionic channels, such as Channelrhodopsin2 (ChR2), allows induction of controlled conductance changes even in thin distant dendrites. Here we show that photostimulation provides a useful extension of the tools to study neuronal encoding, but it has its own limitations. Optically induced fluctuating currents have a low cutoff (~70 Hz), thus limiting the dynamic range of frequency response of cortical neurons. This leads to severe underestimation of the ability of neurons to phase-lock their firing to high frequency components of the input. This limitation could be worked around by using short (2 ms) light stimuli which produce membrane potential responses resembling EPSPs by their fast onset and prolonged decay kinetics. We show that combining application of short light stimuli to different parts of dendritic tree for mimicking distant EPSCs with somatic injection of fluctuating current that mimics fluctuations of membrane potential in vivo, allowed us to study fast encoding of artificial EPSPs photoinduced at different distances from the soma. We conclude that dendritic photostimulation of ChR2 with short light pulses provides a powerful tool to investigate population encoding of simulated synaptic potentials generated in dendrites at different distances from the soma.

摘要

理解由皮层神经元的动作电位产生机制所执行的单神经元计算和编码,是细胞电生理学和计算神经科学面临的核心挑战之一。一种在体外可控条件下研究动作电位编码的既定范式,是通过细胞内注射具有波动电流的信号混合物来模拟体内样背景活动。然而,该技术有两个严重局限性:它使用电流注入,而突触激活会导致电导变化;电流注入在技术上在胞体中最可行,而绝大多数突触输入位于树突上。光遗传学的最新进展提供了规避这些局限性的机会。光激活离子通道(如通道视紫红质2,ChR2)的转基因表达,甚至在细的远端树突中也能诱导可控的电导变化。在这里,我们表明光刺激为研究神经元编码的工具提供了有用的扩展,但它也有自身的局限性。光诱导的波动电流具有低截止频率(约70赫兹),从而限制了皮层神经元频率响应的动态范围。这导致对神经元将其放电与输入的高频成分进行锁相的能力严重低估。通过使用短(2毫秒)光刺激可以解决这个局限性,短光刺激通过其快速起始和延长的衰减动力学产生类似于兴奋性突触后电位的膜电位响应。我们表明,将短光刺激应用于树突树的不同部位以模拟远距离兴奋性突触后电流,与在胞体中注射模拟体内膜电位波动的波动电流相结合,使我们能够研究在距胞体不同距离处光诱导的人工兴奋性突触后电位的快速编码。我们得出结论,用短光脉冲对ChR2进行树突光刺激,为研究在距胞体不同距离的树突中产生的模拟突触电位的群体编码提供了一个强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67cd/4388689/5584d331bc3f/pone.0122286.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验