Department of Bioengineering, Stanford University, Stanford, California, USA.
Nat Neurosci. 2010 Mar;13(3):387-92. doi: 10.1038/nn.2495. Epub 2010 Jan 17.
Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes (for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (approximately 40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations (profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).
通道视紫红质蛋白,如通道视紫红质-2(ChR2),可以在多种细胞、组织和动物物种中以毫秒级的精度驱动尖峰。然而,该蛋白的几个特性限制了光遗传学控制的精度。首先,当 ChR2 表达水平较高时,单个光脉冲会引发额外的尖峰(例如双脉冲),这可能对神经编码很重要。其次,许多细胞在持续的尖峰串中无法跟上 ChR2 驱动的尖峰频率超过伽马(约 40 Hz)范围,从而阻止了光遗传学在广泛而重要的神经信号带中进行时间稳定的访问。最后,快速光驱动的尖峰串会导致 10 mV 或更大的平台电位,从而导致具有信息处理意义的意外上态。我们设计并验证了一种经过工程改造的视蛋白基因(ChETA),该基因解决了所有这些限制(显著减少了额外的尖峰,消除了平台电位,并允许时间稳定、持续的尖峰串至少达到 200 Hz)。