Triplett Marcus A, Gajowa Marta, Antin Benjamin, Sadahiro Masato, Adesnik Hillel, Paninski Liam
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
Nat Neurosci. 2025 Sep 17. doi: 10.1038/s41593-025-02053-7.
Discovering how computations are implemented in the brain at the level of monosynaptic connectivity requires probing for connections from potentially thousands of presynaptic candidate neurons. Two-photon optogenetics is a promising technology for mapping such connectivity via sequential stimulation of individual neurons while recording postsynaptic responses intracellularly. However, this technique is currently not scalable because stimulating neurons one by one requires prohibitively long experiments. Here we developed novel computational tools that, when combined, enable learning of monosynaptic connectivity from high-speed holographic ensemble stimulation. First, we developed a model-based compressed sensing algorithm that identifies connections from postsynaptic responses evoked by stimulating many neurons at once, greatly increasing mapping efficiency. Second, we developed a deep-learning method that isolates the postsynaptic response to each stimulus, allowing stimulation to rapidly switch between ensembles without waiting for the postsynaptic response to return to baseline. Together, our system increases the throughput of connectivity mapping by an order of magnitude, facilitating discovery of the circuitry underlying neural computations.
要在单突触连接水平上发现大脑如何实现计算功能,需要探寻来自潜在数千个突触前候选神经元的连接。双光子光遗传学是一种很有前景的技术,可通过在细胞内记录突触后反应的同时对单个神经元进行顺序刺激来绘制这种连接图谱。然而,该技术目前无法扩展,因为逐个刺激神经元需要过长的实验时间。在这里,我们开发了新颖的计算工具,将其结合使用能够从高速全息集成刺激中学习单突触连接。首先,我们开发了一种基于模型的压缩感知算法,该算法可从同时刺激多个神经元诱发的突触后反应中识别连接,大大提高了映射效率。其次,我们开发了一种深度学习方法,可分离对每个刺激的突触后反应,使刺激能够在不同组之间快速切换,而无需等待突触后反应恢复到基线。我们的系统共同将连接图谱的通量提高了一个数量级,有助于发现神经计算背后的神经回路。