Farinella Matteo, Ruedt Daniel T, Gleeson Padraig, Lanore Frederic, Silver R Angus
Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
PLoS Comput Biol. 2014 Apr 24;10(4):e1003590. doi: 10.1371/journal.pcbi.1003590. eCollection 2014 Apr.
In vivo, cortical pyramidal cells are bombarded by asynchronous synaptic input arising from ongoing network activity. However, little is known about how such 'background' synaptic input interacts with nonlinear dendritic mechanisms. We have modified an existing model of a layer 5 (L5) pyramidal cell to explore how dendritic integration in the apical dendritic tuft could be altered by the levels of network activity observed in vivo. Here we show that asynchronous background excitatory input increases neuronal gain and extends both temporal and spatial integration of stimulus-evoked synaptic input onto the dendritic tuft. Addition of fast and slow inhibitory synaptic conductances, with properties similar to those from dendritic targeting interneurons, that provided a 'balanced' background configuration, partially counteracted these effects, suggesting that inhibition can tune spatio-temporal integration in the tuft. Excitatory background input lowered the threshold for NMDA receptor-mediated dendritic spikes, extended their duration and increased the probability of additional regenerative events occurring in neighbouring branches. These effects were also observed in a passive model where all the non-synaptic voltage-gated conductances were removed. Our results show that glutamate-bound NMDA receptors arising from ongoing network activity can provide a powerful spatially distributed nonlinear dendritic conductance. This may enable L5 pyramidal cells to change their integrative properties as a function of local network activity, potentially allowing both clustered and spatially distributed synaptic inputs to be integrated over extended timescales.
在体内,皮质锥体细胞受到来自持续网络活动产生的异步突触输入的轰击。然而,关于这种“背景”突触输入如何与非线性树突机制相互作用,我们知之甚少。我们修改了一个现有的第5层(L5)锥体细胞模型,以探讨在体内观察到的网络活动水平如何改变顶端树突簇中的树突整合。在这里,我们表明异步背景兴奋性输入增加了神经元增益,并扩展了刺激诱发的突触输入在树突簇上的时间和空间整合。添加快速和慢速抑制性突触电导,其特性类似于来自树突靶向中间神经元的电导,提供了一种“平衡”的背景配置,部分抵消了这些影响,这表明抑制可以调节树突簇中的时空整合。兴奋性背景输入降低了NMDA受体介导的树突棘的阈值,延长了它们的持续时间,并增加了相邻分支中发生额外再生事件的概率。在一个去除了所有非突触电压门控电导的被动模型中也观察到了这些效应。我们的结果表明,来自持续网络活动的谷氨酸结合NMDA受体可以提供强大的空间分布非线性树突电导。这可能使L5锥体细胞能够根据局部网络活动改变其整合特性,潜在地允许聚集和空间分布的突触输入在延长的时间尺度上进行整合。