Psotta Laura, Rockahr Carolin, Gruss Michael, Kirches Elmar, Braun Katharina, Lessmann Volkmar, Bock Jörg, Endres Thomas
Institute of Physiology, Medical Faculty, Otto-von-Guericke-University Magdeburg Magdeburg, Germany.
Department of Zoology/Developmental Neurobiology, Institute of Biology, Faculty of Natural Sciences, Otto-von-Guericke University Magdeburg Magdeburg, Germany.
Front Behav Neurosci. 2015 Mar 20;9:58. doi: 10.3389/fnbeh.2015.00058. eCollection 2015.
There is increasing evidence that brain-derived neurotrophic factor (BDNF) plays a crucial role in Alzheimer's disease (AD) pathology. A number of studies demonstrated that AD patients exhibit reduced BDNF levels in the brain and the blood serum, and in addition, several animal-based studies indicated a potential protective effect of BDNF against Aβ-induced neurotoxicity. In order to further investigate the role of BDNF in the etiology of AD, we created a novel mouse model by crossing a well-established AD mouse model (APP/PS1) with a mouse exhibiting a chronic BDNF deficiency (BDNF(+/-)). This new triple transgenic mouse model enabled us to further analyze the role of BDNF in AD in vivo. We reasoned that in case BDNF has a protective effect against AD pathology, an AD-like phenotype in our new mouse model should occur earlier and/or in more severity than in the APP/PS1-mice. Indeed, the behavioral analysis revealed that the APP/PS1-BDNF(+/-)-mice show an earlier onset of learning impairments in a two-way active avoidance task in comparison to APP/PS1- and BDNF(+/-)-mice. However in the Morris water maze (MWM) test, we could not observe an overall aggrevated impairment in spatial learning and also short-term memory in an object recognition task remained intact in all tested mouse lines. In addition to the behavioral experiments, we analyzed the amyloid plaque pathology in the APP/PS1 and APP/PS1-BDNF(+/-)-mice and observed a comparable plaque density in the two genotypes. Moreover, our results revealed a higher plaque density in prefrontal cortical compared to hippocampal brain regions. Our data reveal that higher cognitive tasks requiring the recruitment of cortical networks appear to be more severely affected in our new mouse model than learning tasks requiring mainly sub-cortical networks. Furthermore, our observations of an accelerated impairment in active avoidance learning in APP/PS1-BDNF(+/-)-mice further supports the hypothesis that BDNF deficiency amplifies AD-related cognitive dysfunctions.
越来越多的证据表明,脑源性神经营养因子(BDNF)在阿尔茨海默病(AD)病理过程中起着关键作用。多项研究表明,AD患者大脑和血清中的BDNF水平降低,此外,一些基于动物的研究表明BDNF对Aβ诱导的神经毒性具有潜在的保护作用。为了进一步研究BDNF在AD病因学中的作用,我们通过将一个成熟的AD小鼠模型(APP/PS1)与一只表现出慢性BDNF缺乏(BDNF(+/-))的小鼠杂交,创建了一种新型小鼠模型。这个新的三重转基因小鼠模型使我们能够在体内进一步分析BDNF在AD中的作用。我们推测,如果BDNF对AD病理具有保护作用,那么在我们的新小鼠模型中,AD样表型应该比APP/PS1小鼠更早出现和/或更严重。事实上,行为分析表明,与APP/PS1和BDNF(+/-)小鼠相比,APP/PS1-BDNF(+/-)小鼠在双向主动回避任务中学习障碍的发作更早。然而,在莫里斯水迷宫(MWM)测试中,我们没有观察到空间学习的整体加重损伤,并且在物体识别任务中的短期记忆在所有测试的小鼠品系中也保持完整。除了行为实验,我们还分析了APP/PS1和APP/PS1-BDNF(+/-)小鼠的淀粉样斑块病理,观察到两种基因型的斑块密度相当。此外,我们的结果显示前额叶皮质的斑块密度高于海马脑区。我们的数据表明,在我们的新小鼠模型中,需要募集皮质网络的更高认知任务似乎比主要需要皮质下网络的学习任务受到更严重的影响。此外,我们对APP/PS1-BDNF(+/-)小鼠主动回避学习加速损伤的观察进一步支持了BDNF缺乏会放大AD相关认知功能障碍的假设。