Suppr超能文献

通过深度超级SAGE分析研究山黧豆转录组对山黧豆壳二孢的抗性反应。

Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis.

作者信息

Almeida Nuno F, Krezdorn Nicolas, Rotter Björn, Winter Peter, Rubiales Diego, Vaz Patto Maria C

机构信息

Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Universidade Nova de Lisboa Oeiras, Portugal.

GenXPro GmbH Frankfurt am Main, Germany.

出版信息

Front Plant Sci. 2015 Mar 20;6:178. doi: 10.3389/fpls.2015.00178. eCollection 2015.

Abstract

Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding.

摘要

草豌豆是一种温带谷物豆类作物,在干旱地区或干旱风险增加的地区具有很大的种植扩展潜力。它也被认为是豆类中对几种重要病害具有抗性的潜在来源,如壳二孢叶枯病。然而,缺乏详细的基因组和/或转录组信息阻碍了在精准育种中对草豌豆抗性相关基因的进一步利用。为了阐明在草豌豆与壳二孢相互作用过程中差异调节的途径并鉴定抗性候选基因,我们使用深度超级SAGE技术,将抗性草豌豆基因型的叶片基因表达谱对拉氏壳二孢感染的早期反应与来自同一基因型的未接种对照样本进行了比较。该分析产生了14387个单标签,其中95.7%映射到参考草豌豆/锈病相互作用转录组。在总共映射的单标签中,738个在对照叶和接种叶之间存在显著差异表达。结果表明,在植物/病原体相互作用的不同阶段起作用的几个基因类别参与了草豌豆对拉氏壳二孢感染的反应。最显著的是,观察到乙烯途径相关和/或受其调节的防御相关基因明显上调。纤维素合酶和木质素生物合成基因的过表达也表明细胞壁代谢发生了改变。这首次对草豌豆对壳二孢感染的基因表达谱进行的全基因组概述为未来精准育种提供了一组有价值的候选抗性基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ef/4367168/72550d214ff0/fpls-06-00178-g0001.jpg

相似文献

1
Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis.
Front Plant Sci. 2015 Mar 20;6:178. doi: 10.3389/fpls.2015.00178. eCollection 2015.
4
Association Mapping of Disease Response to Reveals Novel Loci Underlying Partial Resistance.
Front Plant Sci. 2022 Mar 24;13:842545. doi: 10.3389/fpls.2022.842545. eCollection 2022.
5
Current Perspectives on Reducing the β-ODAP Content and Improving Potential Agronomic Traits in Grass Pea ( L.).
Front Plant Sci. 2021 Oct 18;12:703275. doi: 10.3389/fpls.2021.703275. eCollection 2021.
6
The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE.
BMC Plant Biol. 2011 Feb 14;11:31. doi: 10.1186/1471-2229-11-31.
7
Genome and Transcriptome Analysis of Provides Insights into the Pathogenesis of Ascochyta Blight of Pea.
Microbiol Spectr. 2023 Feb 14;11(1):e0448822. doi: 10.1128/spectrum.04488-22. Epub 2023 Jan 16.
8
Grass pea natural variation reveals oligogenic resistance to Fusarium oxysporum f. sp. pisi.
Plant Genome. 2021 Nov;14(3):e20154. doi: 10.1002/tpg2.20154. Epub 2021 Oct 7.
10

引用本文的文献

1
A dual transcriptome analysis reveals accession-specific resistance responses in against .
Front Plant Sci. 2025 Mar 5;16:1542926. doi: 10.3389/fpls.2025.1542926. eCollection 2025.
2
Wild -A Treasure of Novel Diversity.
Plants (Basel). 2024 Oct 29;13(21):3028. doi: 10.3390/plants13213028.
3
Seed biopriming with mediated defense responses in (L.) against Fusarium rot.
Physiol Mol Biol Plants. 2024 Jan;30(1):49-66. doi: 10.1007/s12298-023-01408-3. Epub 2024 Jan 9.
5
QTL and PACE analyses identify candidate genes for anthracnose resistance in tomato.
Front Plant Sci. 2023 Aug 4;14:1200999. doi: 10.3389/fpls.2023.1200999. eCollection 2023.
6
Identification, characterization, and validation of NBS-encoding genes in grass pea.
Front Genet. 2023 Jun 20;14:1187597. doi: 10.3389/fgene.2023.1187597. eCollection 2023.
7
Genome-wide identification, characterization, and validation of the bHLH transcription factors in grass pea.
Front Genet. 2023 Mar 20;14:1128992. doi: 10.3389/fgene.2023.1128992. eCollection 2023.
8
Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era.
Front Genet. 2022 Apr 7;13:831656. doi: 10.3389/fgene.2022.831656. eCollection 2022.
9
Integrating Phenotypic and Gene Expression Linkage Mapping to Dissect Rust Resistance in Chickling Pea.
Front Plant Sci. 2022 Apr 7;13:837613. doi: 10.3389/fpls.2022.837613. eCollection 2022.
10
The identification and characterization of an oxalyl-CoA synthetase from grass pea ( L.).
RSC Chem Biol. 2022 Feb 8;3(3):320-333. doi: 10.1039/d1cb00202c. eCollection 2022 Mar 9.

本文引用的文献

4
Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data.
Plant Cell Environ. 2014 May;37(5):1250-8. doi: 10.1111/pce.12231. Epub 2013 Dec 17.
5
Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.
PLoS Genet. 2013;9(8):e1003704. doi: 10.1371/journal.pgen.1003704. Epub 2013 Aug 22.
7
Primer3--new capabilities and interfaces.
Nucleic Acids Res. 2012 Aug;40(15):e115. doi: 10.1093/nar/gks596. Epub 2012 Jun 22.
8
Future prospects for ascochyta blight resistance breeding in cool season food legumes.
Front Plant Sci. 2012 Feb 7;3:27. doi: 10.3389/fpls.2012.00027. eCollection 2012.
9
Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms.
Front Plant Sci. 2012 Apr 23;3:77. doi: 10.3389/fpls.2012.00077. eCollection 2012.
10
Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5535-40. doi: 10.1073/pnas.1115982109. Epub 2012 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验