Grassini Gaia, Pennacchietti Eugenia, Cappadocio Francesca, Occhialini Alessandra, De Biase Daniela
Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologie pour la Santé (CPBS), F-34293 Montpellier, France ; CNRS, FRE 3689, CPBS, F-34293 Montpellier, France.
FEBS Open Bio. 2015 Mar 17;5:209-18. doi: 10.1016/j.fob.2015.03.006. eCollection 2015.
In orally acquired bacteria, the ability to counteract extreme acid stress (pH ⩽ 2.5) ensures survival during transit through the animal host stomach. In several neutralophilic bacteria, the glutamate-dependent acid resistance system (GDAR) is the most efficient molecular system in conferring protection from acid stress. In Escherichia coli its structural components are either of the two glutamate decarboxylase isoforms (GadA, GadB) and the antiporter, GadC, which imports glutamate and exports γ-aminobutyrate, the decarboxylation product. The system works by consuming protons intracellularly, as part of the decarboxylation reaction, and exporting positive charges via the antiporter. Herein, biochemical and spectroscopic properties of GadB from Brucella microti (BmGadB), a Brucella species which possesses GDAR, are described. B. microti belongs to a group of lately described and atypical brucellae that possess functional gadB and gadC genes, unlike the most well-known "classical" Brucella species, which include important human pathogens. BmGadB is hexameric at acidic pH. The pH-dependent spectroscopic properties and activity profile, combined with in silico sequence comparison with E. coli GadB (EcGadB), suggest that BmGadB has the necessary structural requirements for the binding of activating chloride ions at acidic pH and for the closure of its active site at neutral pH. On the contrary, cellular localization analysis, corroborated by sequence inspection, suggests that BmGadB does not undergo membrane recruitment at acidic pH, which was observed in EcGadB. The comparison of GadB from evolutionary distant microorganisms suggests that for this enzyme to be functional in GDAR some structural features must be preserved.
对于经口感染的细菌而言,抵抗极端酸性应激(pH⩽2.5)的能力可确保其在通过动物宿主胃部的过程中存活下来。在几种嗜中性细菌中,谷氨酸依赖型抗酸系统(GDAR)是赋予细菌抗酸应激保护能力的最有效分子系统。在大肠杆菌中,其结构成分是两种谷氨酸脱羧酶同工型(GadA、GadB)之一以及反向转运蛋白GadC,GadC可导入谷氨酸并输出脱羧产物γ-氨基丁酸。该系统通过在细胞内消耗质子(作为脱羧反应的一部分)并经由反向转运蛋白输出正电荷来发挥作用。本文描述了拥有GDAR的布鲁氏菌属物种——微小布鲁氏菌(BmGadB)中GadB的生化和光谱特性。微小布鲁氏菌属于最近描述的非典型布鲁氏菌群体,与包括重要人类病原体在内的最著名“经典”布鲁氏菌物种不同,该群体拥有功能性的gadB和gadC基因。BmGadB在酸性pH条件下为六聚体。pH依赖的光谱特性和活性谱,结合与大肠杆菌GadB(EcGadB)的计算机序列比较,表明BmGadB具备在酸性pH条件下结合激活氯离子以及在中性pH条件下关闭其活性位点的必要结构条件。相反,经序列检查证实的细胞定位分析表明,BmGadB在酸性pH条件下不会像EcGadB那样发生膜募集。对进化距离较远的微生物中GadB的比较表明,要使这种酶在GDAR中发挥功能,必须保留一些结构特征。