Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden.
SLAC National Accelerator Laboratory, Menlo Park, CA 94025.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):8193-8198. doi: 10.1073/pnas.1705303114. Epub 2017 Jun 26.
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.
水存在于高密和低密无定形冰相(HDA 和 LDA)中,这可能对应于相图亚稳区中高密度液体(HDL)和低密度液体(LDL)的玻璃态。然而,玻璃化转变和高密度到低密度转变的性质仍存在争议,需要新的实验证据。在这里,我们在 1 巴压力下,在小角 X 射线散射(SAXS)几何结构中,结合广角 X 射线散射(WAXS)和 X 射线光子相关光谱学(XPCS),来探测无定形冰在高密度到低密度转变过程中的结构和动力学性质。通过分析结构因子和径向分布函数,在 = 125 K 时观察到两个结构上明显不同的区域共存。XPCS 探测动量空间中的动力学,在 SAXS 几何结构中,反映了纳米尺度上的结构弛豫。HDA 的动力学特征是具有大时间常数的缓慢成分,这是由粘弹性松弛和纳米级异质结构的应力释放引起的。在 110 K 以上,出现了一个更快、强烈依赖于温度的成分,其动量转移依赖性指向纳米级扩散。在 130 K 转变为低密度形式后,这个动力学成分的速度减慢,但仍然是扩散的。在不同的解释中,讨论了高密度和低密度两种形式的扩散性质,结果与超粘性区中液体-液体转变的假设最一致。