Michel Pierre, Auquier Pascal, Baumstarck Karine, Loundou Anderson, Ghattas Badih, Lançon Christophe, Boyer Laurent
EA 3279 - Public Health, Chronic Diseases and Quality of Life - Research Unit, Aix-Marseille Univ, 13005, Marseille, France.
Department of Mathematics, Faculté des Sciences de Luminy, Aix-Marseille Univ, 13009, Marseille, France.
Qual Life Res. 2015 Oct;24(10):2483-92. doi: 10.1007/s11136-015-0982-y. Epub 2015 Apr 9.
The classification of patients into distinct categories of quality of life (QoL) levels may be useful for clinicians to interpret QoL scores from multidimensional questionnaires. The aim of this study had been to define clusters of QoL levels from a specific multidimensional questionnaire (SQoL18) for patients with schizophrenia by using a new method of interpretable clustering and to test its validity regarding socio-demographic, clinical, and QoL information.
In this multicentre cross-sectional study, patients with schizophrenia have been classified using a hierarchical top-down method called clustering using unsupervised binary trees (CUBT). A three-group structure has been employed to define QoL levels as "high", "moderate", or "low". Socio-demographic, clinical, and QoL data have been compared between the three clusters to ensure their clinical relevance.
A total of 514 patients have been analysed: 78 are classified as "low", 265 as "moderate", and 171 as "high". The clustering shows satisfactory statistical properties, including reproducibility (using bootstrap analysis) and discriminancy (using factor analysis). The three clusters consistently differentiate patients. As expected, individuals in the "high" QoL level cluster report the lowest scores on the Positive and Negative Syndrome Scale (p = 0.01) and the Calgary Depression Scale (p < 0.01), and the highest scores on the Global Assessment of Functioning (p < 0.03), the SF36 (p < 0.01), the EuroQol (p < 0.01), and the Quality of Life Inventory (p < 0.01).
Given the ease with which this method can be applied, classification using CUBT may be useful for facilitating the interpretation of QoL scores in clinical practice.
将患者分为不同的生活质量(QoL)水平类别,可能有助于临床医生解读多维问卷中的QoL评分。本研究的目的是通过一种新的可解释聚类方法,从针对精神分裂症患者的特定多维问卷(SQoL18)中定义QoL水平聚类,并就社会人口统计学、临床和QoL信息检验其有效性。
在这项多中心横断面研究中,使用一种称为无监督二叉树聚类(CUBT)的分层自上而下方法对精神分裂症患者进行分类。采用三组结构将QoL水平定义为“高”、“中”或“低”。比较了三个聚类之间的社会人口统计学、临床和QoL数据,以确保其临床相关性。
共分析了514例患者:78例被分类为“低”,265例为“中”,171例为“高”。聚类显示出令人满意的统计特性,包括可重复性(使用自助分析)和区分性(使用因子分析)。这三个聚类能够持续区分患者。正如预期的那样,“高”QoL水平聚类中的个体在阳性和阴性症状量表上的得分最低(p = 0.01),在卡尔加里抑郁量表上的得分也最低(p < 0.01),而在功能总体评定量表上的得分最高(p < 0.03),在SF36量表上的得分最高(p < 0.01),在欧洲生活质量量表上的得分最高(p < 0.01),在生活质量量表上的得分也最高(p < 0.01)。
鉴于该方法易于应用,使用CUBT进行分类可能有助于在临床实践中促进对QoL评分的解读。