Suppr超能文献

纵向研究中基于集合的基因关联检验。

Set-based tests for genetic association in longitudinal studies.

作者信息

He Zihuai, Zhang Min, Lee Seunggeun, Smith Jennifer A, Guo Xiuqing, Palmas Walter, Kardia Sharon L R, Diez Roux Ana V, Mukherjee Bhramar

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.

Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, U.S.A.

出版信息

Biometrics. 2015 Sep;71(3):606-15. doi: 10.1111/biom.12310. Epub 2015 Apr 8.

Abstract

Genetic association studies with longitudinal markers of chronic diseases (e.g., blood pressure, body mass index) provide a valuable opportunity to explore how genetic variants affect traits over time by utilizing the full trajectory of longitudinal outcomes. Since these traits are likely influenced by the joint effect of multiple variants in a gene, a joint analysis of these variants considering linkage disequilibrium (LD) may help to explain additional phenotypic variation. In this article, we propose a longitudinal genetic random field model (LGRF), to test the association between a phenotype measured repeatedly during the course of an observational study and a set of genetic variants. Generalized score type tests are developed, which we show are robust to misspecification of within-subject correlation, a feature that is desirable for longitudinal analysis. In addition, a joint test incorporating gene-time interaction is further proposed. Computational advancement is made for scalable implementation of the proposed methods in large-scale genome-wide association studies (GWAS). The proposed methods are evaluated through extensive simulation studies and illustrated using data from the Multi-Ethnic Study of Atherosclerosis (MESA). Our simulation results indicate substantial gain in power using LGRF when compared with two commonly used existing alternatives: (i) single marker tests using longitudinal outcome and (ii) existing gene-based tests using the average value of repeated measurements as the outcome.

摘要

对慢性病纵向指标(如血压、体重指数)进行的基因关联研究,提供了一个宝贵的机会,可通过利用纵向结果的完整轨迹来探索基因变异如何随时间影响性状。由于这些性状可能受到基因中多个变异的联合作用影响,考虑连锁不平衡(LD)对这些变异进行联合分析,可能有助于解释更多的表型变异。在本文中,我们提出了一种纵向基因随机场模型(LGRF),以检验在观察性研究过程中反复测量的表型与一组基因变异之间的关联。我们开发了广义得分型检验,结果表明该检验对受试者内相关性的错误设定具有稳健性,这是纵向分析所期望的一个特性。此外,还进一步提出了一种纳入基因-时间相互作用的联合检验。在大规模全基因组关联研究(GWAS)中,我们在计算方面取得了进展,以实现所提出方法的可扩展实施。我们通过广泛的模拟研究对所提出的方法进行了评估,并使用动脉粥样硬化多族裔研究(MESA)的数据进行了说明。我们的模拟结果表明,与两种常用的现有方法相比,使用LGRF时在检验效能上有显著提高:(i)使用纵向结果的单标记检验,以及(ii)使用重复测量平均值作为结果的现有基于基因的检验。

相似文献

1
Set-based tests for genetic association in longitudinal studies.
Biometrics. 2015 Sep;71(3):606-15. doi: 10.1111/biom.12310. Epub 2015 Apr 8.
2
Modeling and testing for joint association using a genetic random field model.
Biometrics. 2014 Sep;70(3):471-9. doi: 10.1111/biom.12160. Epub 2014 Mar 13.
4
Longitudinal SNP-set association analysis of quantitative phenotypes.
Genet Epidemiol. 2017 Jan;41(1):81-93. doi: 10.1002/gepi.22016. Epub 2016 Nov 9.
5
Functional linear models for association analysis of quantitative traits.
Genet Epidemiol. 2013 Nov;37(7):726-42. doi: 10.1002/gepi.21757.
6
An exposure-weighted score test for genetic associations integrating environmental risk factors.
Biometrics. 2015 Sep;71(3):596-605. doi: 10.1111/biom.12328. Epub 2015 Jul 1.
7
Detecting susceptibility genes in case-control studies using set association.
BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S9. doi: 10.1186/1471-2156-4-S1-S9.
8
Retrospective Association Analysis of Longitudinal Binary Traits Identifies Important Loci and Pathways in Cocaine Use.
Genetics. 2019 Dec;213(4):1225-1236. doi: 10.1534/genetics.119.302598. Epub 2019 Oct 7.
9
Bivariate traits association analysis using generalized estimating equations in family data.
Stat Appl Genet Mol Biol. 2020 May 5;19(2):sagmb-2019-0030. doi: 10.1515/sagmb-2019-0030.
10
The group exponential lasso for bi-level variable selection.
Biometrics. 2015 Sep;71(3):731-40. doi: 10.1111/biom.12300. Epub 2015 Mar 13.

引用本文的文献

1
Random field modeling of multi-trait multi-locus association for detecting methylation quantitative trait loci.
Bioinformatics. 2022 Aug 10;38(16):3853-3862. doi: 10.1093/bioinformatics/btac443.
2
Endocannabinoid Gene × Gene Interaction Association to Alcohol Use Disorder in Two Adolescent Cohorts.
Front Psychiatry. 2021 Apr 20;12:645746. doi: 10.3389/fpsyt.2021.645746. eCollection 2021.
3
Pathway analysis of rare variants for the clustered phenotypes by using hierarchical structured components analysis.
BMC Med Genomics. 2019 Jul 11;12(Suppl 5):100. doi: 10.1186/s12920-019-0517-4.
4
Distributed Lag Interaction Models with Two Pollutants.
J R Stat Soc Ser C Appl Stat. 2019 Jan;68(1):79-97. doi: 10.1111/rssc.12297. Epub 2018 Jul 8.
5
Set-Based Tests for the Gene-Environment Interaction in Longitudinal Studies.
J Am Stat Assoc. 2017;112(519):966-978. doi: 10.1080/01621459.2016.1252266. Epub 2016 Dec 16.
8
Adaptive testing for association between two random vectors in moderate to high dimensions.
Genet Epidemiol. 2017 Nov;41(7):599-609. doi: 10.1002/gepi.22059. Epub 2017 Jul 17.
9
A score test for genetic class-level association with nonlinear biomarker trajectories.
Stat Med. 2017 Aug 30;36(19):3075-3091. doi: 10.1002/sim.7314. Epub 2017 May 23.

本文引用的文献

1
Modeling and testing for joint association using a genetic random field model.
Biometrics. 2014 Sep;70(3):471-9. doi: 10.1111/biom.12160. Epub 2014 Mar 13.
2
A generalized genetic random field method for the genetic association analysis of sequencing data.
Genet Epidemiol. 2014 Apr;38(3):242-53. doi: 10.1002/gepi.21790. Epub 2014 Jan 30.
3
Test for interactions between a genetic marker set and environment in generalized linear models.
Biostatistics. 2013 Sep;14(4):667-81. doi: 10.1093/biostatistics/kxt006. Epub 2013 Mar 5.
4
Longitudinal association analysis of quantitative traits.
Genet Epidemiol. 2012 Dec;36(8):856-69. doi: 10.1002/gepi.21673. Epub 2012 Sep 10.
5
Genome-wide association mapping with longitudinal data.
Genet Epidemiol. 2012 Jul;36(5):463-71. doi: 10.1002/gepi.21640. Epub 2012 May 11.
6
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Nature. 2011 Sep 11;478(7367):103-9. doi: 10.1038/nature10405.
7
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
8
GCTA: a tool for genome-wide complex trait analysis.
Am J Hum Genet. 2011 Jan 7;88(1):76-82. doi: 10.1016/j.ajhg.2010.11.011. Epub 2010 Dec 17.
9
An evaluation of statistical approaches to rare variant analysis in genetic association studies.
Genet Epidemiol. 2010 Feb;34(2):188-93. doi: 10.1002/gepi.20450.
10
Gene-trait similarity regression for multimarker-based association analysis.
Biometrics. 2009 Sep;65(3):822-32. doi: 10.1111/j.1541-0420.2008.01176.x. Epub 2009 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验