He Zihuai, Zhang Min, Lee Seunggeun, Smith Jennifer A, Guo Xiuqing, Palmas Walter, Kardia Sharon L R, Diez Roux Ana V, Mukherjee Bhramar
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.
Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, U.S.A.
Biometrics. 2015 Sep;71(3):606-15. doi: 10.1111/biom.12310. Epub 2015 Apr 8.
Genetic association studies with longitudinal markers of chronic diseases (e.g., blood pressure, body mass index) provide a valuable opportunity to explore how genetic variants affect traits over time by utilizing the full trajectory of longitudinal outcomes. Since these traits are likely influenced by the joint effect of multiple variants in a gene, a joint analysis of these variants considering linkage disequilibrium (LD) may help to explain additional phenotypic variation. In this article, we propose a longitudinal genetic random field model (LGRF), to test the association between a phenotype measured repeatedly during the course of an observational study and a set of genetic variants. Generalized score type tests are developed, which we show are robust to misspecification of within-subject correlation, a feature that is desirable for longitudinal analysis. In addition, a joint test incorporating gene-time interaction is further proposed. Computational advancement is made for scalable implementation of the proposed methods in large-scale genome-wide association studies (GWAS). The proposed methods are evaluated through extensive simulation studies and illustrated using data from the Multi-Ethnic Study of Atherosclerosis (MESA). Our simulation results indicate substantial gain in power using LGRF when compared with two commonly used existing alternatives: (i) single marker tests using longitudinal outcome and (ii) existing gene-based tests using the average value of repeated measurements as the outcome.
对慢性病纵向指标(如血压、体重指数)进行的基因关联研究,提供了一个宝贵的机会,可通过利用纵向结果的完整轨迹来探索基因变异如何随时间影响性状。由于这些性状可能受到基因中多个变异的联合作用影响,考虑连锁不平衡(LD)对这些变异进行联合分析,可能有助于解释更多的表型变异。在本文中,我们提出了一种纵向基因随机场模型(LGRF),以检验在观察性研究过程中反复测量的表型与一组基因变异之间的关联。我们开发了广义得分型检验,结果表明该检验对受试者内相关性的错误设定具有稳健性,这是纵向分析所期望的一个特性。此外,还进一步提出了一种纳入基因-时间相互作用的联合检验。在大规模全基因组关联研究(GWAS)中,我们在计算方面取得了进展,以实现所提出方法的可扩展实施。我们通过广泛的模拟研究对所提出的方法进行了评估,并使用动脉粥样硬化多族裔研究(MESA)的数据进行了说明。我们的模拟结果表明,与两种常用的现有方法相比,使用LGRF时在检验效能上有显著提高:(i)使用纵向结果的单标记检验,以及(ii)使用重复测量平均值作为结果的现有基于基因的检验。